我有一个数据框架:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])

   A  B  C
0  5  6  7
1  7  8  9

[2 rows x 3 columns]

并且我需要添加第一行[2,3,4],得到:

   A  B  C
0  2  3  4
1  5  6  7
2  7  8  9

我尝试过append()和concat()函数,但找不到正确的方法。

如何添加/插入系列数据帧?


当前回答

给出熊猫数据框架的数据结构是一个序列列表(每个序列为一列),方便在任意位置插入一列。 我想到的一个办法是先转置数据帧,插入一列,再转置回来。你可能还需要重命名索引(行名),就像这样:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])
df = df.transpose()
df.insert(0, 2, [2,3,4])
df = df.transpose()
df.index = [i for i in range(3)]
df

    A   B   C
0   2   3   4
1   5   6   7
2   7   8   9

其他回答

测试了几个答案,很明显使用pd.concat()对于大数据帧更有效。

比较使用dict和list的性能,list的效率更高,但对于小数据帧,使用dict应该没有问题,而且可读性更好。


1st - pd.concat() +列表

%%timeit
df = pd.DataFrame(columns=['a', 'b'])
for i in range(10000):
    df = pd.concat([pd.DataFrame([[1,2]], columns=df.columns), df], ignore_index=True)

每循环4.88 s±47.1 ms(平均±标准值7次运行,每循环1次)

2nd - pd.append() + dict

%%timeit

df = pd.DataFrame(columns=['a', 'b'])
for i in range(10000):
    df = df.append({'a': 1, 'b': 2}, ignore_index=True)

每循环10.2 s±41.4 ms(平均±标准值7次运行,每循环1次)

第三- pd.DataFrame()。Loc +索引操作

%%timeit
df = pd.DataFrame(columns=['a','b'])
for i in range(10000):
    df.loc[-1] = [1,2]
    df.index = df.index + 1
    df = df.sort_index()

每循环17.5 s±37.3 ms(平均±标准值7次运行,每循环1次)

我突然想到,也许T属性是一个有效的选择。转置,可以避开误导人的df。Loc[-1] =[2,3,4],就像@flow2k提到的那样,它适用于更通用的情况,比如你想在任意行之前插入[2,3,4],这是concat(),append()难以实现的。没有必要为定义和调试函数而费心。

a = df.T
a.insert(0,'anyName',value=[2,3,4])
# just give insert() any column name you want, we'll rename it.
a.rename(columns=dict(zip(a.columns,[i for i in range(a.shape[1])])),inplace=True)
# set inplace to a Boolean as you need.
df=a.T
df

    A   B   C
0   2   3   4
1   5   6   7
2   7   8   9

我想这可以部分解释@MattCochrane抱怨为什么pandas没有像insert()那样插入一行的方法。

在pandas DataFrame中添加一行非常简单:

创建一个常规的Python字典,其列名与你的Dataframe相同; 使用pandas.append()方法并传入字典的名称,其中.append()是DataFrame实例上的方法; 在字典名称后面添加ignore_index=True。

这看起来可能过于简单,但令人难以置信的是,一个简单的插入新行函数没有内置。我读了很多关于追加一个新的df到原来的,但我想知道这是否会更快。

df.loc[0] = [row1data, blah...]
i = len(df) + 1
df.loc[i] = [row2data, blah...]

按照下面的例子做:

A_row = pd。系列([1,2])

Df = pd。DataFrame([[3,4], [5,6]])

row_df = pd.DataFrame([a_row])

Df = pd。concat([row_df, df], ignore_index=True)

结果是:

   0  1
0  1  2
1  3  4
2  5  6