我有一个数据框架:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])

   A  B  C
0  5  6  7
1  7  8  9

[2 rows x 3 columns]

并且我需要添加第一行[2,3,4],得到:

   A  B  C
0  2  3  4
1  5  6  7
2  7  8  9

我尝试过append()和concat()函数,但找不到正确的方法。

如何添加/插入系列数据帧?


当前回答

给出熊猫数据框架的数据结构是一个序列列表(每个序列为一列),方便在任意位置插入一列。 我想到的一个办法是先转置数据帧,插入一列,再转置回来。你可能还需要重命名索引(行名),就像这样:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])
df = df.transpose()
df.insert(0, 2, [2,3,4])
df = df.transpose()
df.index = [i for i in range(3)]
df

    A   B   C
0   2   3   4
1   5   6   7
2   7   8   9

其他回答

只需将row赋值给一个特定的索引,使用loc:

 df.loc[-1] = [2, 3, 4]  # adding a row
 df.index = df.index + 1  # shifting index
 df = df.sort_index()  # sorting by index

你会得到:

    A  B  C
 0  2  3  4
 1  5  6  7
 2  7  8  9

参见Pandas文档索引:放大设置。

我把一个简短的函数放在一起,在插入一行时允许更多的灵活性:

def insert_row(idx, df, df_insert):
    dfA = df.iloc[:idx, ]
    dfB = df.iloc[idx:, ]

    df = dfA.append(df_insert).append(dfB).reset_index(drop = True)

    return df

可以进一步缩写为:

def insert_row(idx, df, df_insert):
    return df.iloc[:idx, ].append(df_insert).append(df.iloc[idx:, ]).reset_index(drop = True)

然后你可以使用如下语句:

df = insert_row(2, df, df_new)

其中2是df中要插入df_new的索引位置。

给出熊猫数据框架的数据结构是一个序列列表(每个序列为一列),方便在任意位置插入一列。 我想到的一个办法是先转置数据帧,插入一列,再转置回来。你可能还需要重命名索引(行名),就像这样:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])
df = df.transpose()
df.insert(0, 2, [2,3,4])
df = df.transpose()
df.index = [i for i in range(3)]
df

    A   B   C
0   2   3   4
1   5   6   7
2   7   8   9

按照下面的例子做:

A_row = pd。系列([1,2])

Df = pd。DataFrame([[3,4], [5,6]])

row_df = pd.DataFrame([a_row])

Df = pd。concat([row_df, df], ignore_index=True)

结果是:

   0  1
0  1  2
1  3  4
2  5  6

下面是在不排序和重置索引的情况下将一行插入pandas数据框架的最佳方法:

import pandas as pd

df = pd.DataFrame(columns=['a','b','c'])

def insert(df, row):
    insert_loc = df.index.max()

    if pd.isna(insert_loc):
        df.loc[0] = row
    else:
        df.loc[insert_loc + 1] = row

insert(df,[2,3,4])
insert(df,[8,9,0])
print(df)