是否有一种方便的方法来计算一个序列或一维numpy数组的百分位数?

我正在寻找类似Excel的百分位数函数。

我在NumPy的统计参考中找不到这个。我所能找到的是中位数(第50百分位),但没有更具体的东西。


当前回答

import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile

其他回答

顺便说一下,有一个百分位数函数的纯python实现,以防人们不想依赖scipy。函数复制如下:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

我通常看到的百分位数的定义期望从所提供的列表中找到P个百分比的值…这意味着结果必须来自集合,而不是集合元素之间的插值。为此,可以使用一个更简单的函数。

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

如果你想从所提供的列表中获得等于或低于P百分比的值,那么使用以下简单的修改:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

或者使用@ijustlovemath建议的简化:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]

对于系列:用于描述函数

假设df具有以下列sales和id。你想计算销售额的百分比,它是这样工作的,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on
import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile

我引导数据,然后绘制出10个样本的置信区间。置信区间表示概率在5%到95%之间的范围。

 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 import numpy as np
 import json
 import dc_stat_think as dcst

 data = [154, 400, 1124, 82, 94, 108]
 #print (np.percentile(data,[0.5,95])) # gives the 95th percentile

 bs_data = dcst.draw_bs_reps(data, np.mean, size=6*10)

 #print(np.reshape(bs_data,(24,6)))

 x= np.linspace(1,6,6)
 print(x)
 for (item1,item2,item3,item4,item5,item6) in bs_data.reshape((10,6)):
     line_data=[item1,item2,item3,item4,item5,item6]
     ci=np.percentile(line_data,[.025,.975])
     mean_avg=np.mean(line_data)
     fig, ax = plt.subplots()
     ax.plot(x,line_data)
     ax.fill_between(x, (line_data-ci[0]), (line_data+ci[1]), color='b', alpha=.1)
     ax.axhline(mean_avg,color='red')
     plt.show()