是否有一种方便的方法来计算一个序列或一维numpy数组的百分位数?

我正在寻找类似Excel的百分位数函数。

我在NumPy的统计参考中找不到这个。我所能找到的是中位数(第50百分位),但没有更具体的东西。


当前回答

从Python 3.8开始,标准库附带了quantiles函数,作为统计模块的一部分:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

Quantiles为给定的分布区域返回n - 1个切割点的列表,分隔n个分位数区间(以等概率将dist划分为n个连续区间):

统计数据。分位数(dist, *, n=4, method='exclusive')

在我们的例子中,n(百分位数)是100。

其他回答

顺便说一下,有一个百分位数函数的纯python实现,以防人们不想依赖scipy。函数复制如下:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

对于系列:用于描述函数

假设df具有以下列sales和id。你想计算销售额的百分比,它是这样工作的,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on

如果你需要答案是输入numpy数组的成员:

再加上numpy中的百分位数函数默认情况下将输出计算为输入向量中两个相邻项的线性加权平均。在某些情况下,人们可能希望返回的百分位数是向量的实际元素,在这种情况下,从v1.9.0开始,您可以使用“插值”选项,使用“低”、“高”或“最近”。

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

后者是向量中的一个实际条目,而前者是与百分位数相邻的两个向量条目的线性插值

您可能会对SciPy Stats包感兴趣。它有你所追求的百分位数函数和许多其他统计上的好处。

Percentile()在numpy中也可用。

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50) # return 50th percentile, e.g median.
print p
3.0

这张票让我相信他们不会很快将percentile()集成到numpy中。

下面是如何在没有numpy的情况下,仅使用python来计算百分比。

import math

def percentile(data, perc: int):
    size = len(data)
    return sorted(data)[int(math.ceil((size * perc) / 100)) - 1]

percentile([10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], 90)
# 9.0
percentile([142, 232, 290, 120, 274, 123, 146, 113, 272, 119, 124, 277, 207], 50)
# 146