我有一个Express Node.js应用程序,但我也有一个机器学习算法在Python中使用。是否有一种方法可以从我的Node.js应用程序调用Python函数来利用机器学习库的强大功能?


当前回答

有Python背景,想要在Node.js应用程序中集成机器学习模型的人:

它使用了child_process核心模块:

const express = require('express')
const app = express()

app.get('/', (req, res) => {

    const { spawn } = require('child_process');
    const pyProg = spawn('python', ['./../pypy.py']);

    pyProg.stdout.on('data', function(data) {

        console.log(data.toString());
        res.write(data);
        res.end('end');
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))

它不需要Python脚本中的sys模块。

下面是使用Promise执行任务的更模块化的方式:

const express = require('express')
const app = express()

let runPy = new Promise(function(success, nosuccess) {

    const { spawn } = require('child_process');
    const pyprog = spawn('python', ['./../pypy.py']);

    pyprog.stdout.on('data', function(data) {

        success(data);
    });

    pyprog.stderr.on('data', (data) => {

        nosuccess(data);
    });
});

app.get('/', (req, res) => {

    res.write('welcome\n');

    runPy.then(function(fromRunpy) {
        console.log(fromRunpy.toString());
        res.end(fromRunpy);
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))

其他回答

我在节点10和子进程1.0.2上。来自python的数据是一个字节数组,必须进行转换。这是另一个用python发出http请求的快速示例。

node

const process = spawn("python", ["services/request.py", "https://www.google.com"])

return new Promise((resolve, reject) =>{
    process.stdout.on("data", data =>{
        resolve(data.toString()); // <------------ by default converts to utf-8
    })
    process.stderr.on("data", reject)
})

request.py

import urllib.request
import sys

def karl_morrison_is_a_pedant():   
    response = urllib.request.urlopen(sys.argv[1])
    html = response.read()
    print(html)
    sys.stdout.flush()

karl_morrison_is_a_pedant()

p.s.不是一个人为的例子,因为节点的http模块不加载我需要做的一些请求

之前的大多数答案都将承诺的成功称为on(“数据”),这不是正确的方法,因为如果你收到很多数据,你只会得到第一部分。相反,你必须在end事件上做。

const { spawn } = require('child_process');
const pythonDir = (__dirname + "/../pythonCode/"); // Path of python script folder
const python = pythonDir + "pythonEnv/bin/python"; // Path of the Python interpreter

/** remove warning that you don't care about */
function cleanWarning(error) {
    return error.replace(/Detector is not able to detect the language reliably.\n/g,"");
}

function callPython(scriptName, args) {
    return new Promise(function(success, reject) {
        const script = pythonDir + scriptName;
        const pyArgs = [script, JSON.stringify(args) ]
        const pyprog = spawn(python, pyArgs );
        let result = "";
        let resultError = "";
        pyprog.stdout.on('data', function(data) {
            result += data.toString();
        });

        pyprog.stderr.on('data', (data) => {
            resultError += cleanWarning(data.toString());
        });

        pyprog.stdout.on("end", function(){
            if(resultError == "") {
                success(JSON.parse(result));
            }else{
                console.error(`Python error, you can reproduce the error with: \n${python} ${script} ${pyArgs.join(" ")}`);
                const error = new Error(resultError);
                console.error(error);
                reject(resultError);
            }
        })
   });
}
module.exports.callPython = callPython;

电话:

const pythonCaller = require("../core/pythonCaller");
const result = await pythonCaller.callPython("preprocessorSentiment.py", {"thekeyYouwant": value});

python:

try:
    argu = json.loads(sys.argv[1])
except:
    raise Exception("error while loading argument")

您现在可以使用支持Python和Javascript的RPC库,例如zerorpc

从他们的头版:

node . js的客户

var zerorpc = require("zerorpc");

var client = new zerorpc.Client();
client.connect("tcp://127.0.0.1:4242");

client.invoke("hello", "RPC", function(error, res, more) {
    console.log(res);
});

Python服务器

import zerorpc

class HelloRPC(object):
    def hello(self, name):
        return "Hello, %s" % name

s = zerorpc.Server(HelloRPC())
s.bind("tcp://0.0.0.0:4242")
s.run()

有Python背景,想要在Node.js应用程序中集成机器学习模型的人:

它使用了child_process核心模块:

const express = require('express')
const app = express()

app.get('/', (req, res) => {

    const { spawn } = require('child_process');
    const pyProg = spawn('python', ['./../pypy.py']);

    pyProg.stdout.on('data', function(data) {

        console.log(data.toString());
        res.write(data);
        res.end('end');
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))

它不需要Python脚本中的sys模块。

下面是使用Promise执行任务的更模块化的方式:

const express = require('express')
const app = express()

let runPy = new Promise(function(success, nosuccess) {

    const { spawn } = require('child_process');
    const pyprog = spawn('python', ['./../pypy.py']);

    pyprog.stdout.on('data', function(data) {

        success(data);
    });

    pyprog.stderr.on('data', (data) => {

        nosuccess(data);
    });
});

app.get('/', (req, res) => {

    res.write('welcome\n');

    runPy.then(function(fromRunpy) {
        console.log(fromRunpy.toString());
        res.end(fromRunpy);
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))

Boa很适合您的需求,请参阅扩展Python tensorflow keras的示例。JavaScript中的顺序类。

const fs = require('fs');
const boa = require('@pipcook/boa');
const { tuple, enumerate } = boa.builtins();

const tf = boa.import('tensorflow');
const tfds = boa.import('tensorflow_datasets');

const { keras } = tf;
const { layers } = keras;

const [
  [ train_data, test_data ],
  info
] = tfds.load('imdb_reviews/subwords8k', boa.kwargs({
  split: tuple([ tfds.Split.TRAIN, tfds.Split.TEST ]),
  with_info: true,
  as_supervised: true
}));

const encoder = info.features['text'].encoder;
const padded_shapes = tuple([
  [ null ], tuple([])
]);
const train_batches = train_data.shuffle(1000)
  .padded_batch(10, boa.kwargs({ padded_shapes }));
const test_batches = test_data.shuffle(1000)
  .padded_batch(10, boa.kwargs({ padded_shapes }));

const embedding_dim = 16;
const model = keras.Sequential([
  layers.Embedding(encoder.vocab_size, embedding_dim),
  layers.GlobalAveragePooling1D(),
  layers.Dense(16, boa.kwargs({ activation: 'relu' })),
  layers.Dense(1, boa.kwargs({ activation: 'sigmoid' }))
]);

model.summary();
model.compile(boa.kwargs({
  optimizer: 'adam',
  loss: 'binary_crossentropy',
  metrics: [ 'accuracy' ]
}));

完整的示例在:https://github.com/alibaba/pipcook/blob/master/example/boa/tf2/word-embedding.js

我在另一个项目pipook中使用了Boa,这是为了解决JavaScript开发人员的机器学习问题,我们通过Boa库在Python生态系统(tensorflow,keras,pytorch)上实现了ML/DL模型。