我正在从csv创建一个DataFrame,如下所示:
stock = pd.read_csv('data_in/' + filename + '.csv', skipinitialspace=True)
DataFrame有一个日期列。是否有一种方法可以创建一个新的DataFrame(或者只是覆盖现有的DataFrame),它只包含日期值落在指定日期范围内或两个指定日期值之间的行?
我正在从csv创建一个DataFrame,如下所示:
stock = pd.read_csv('data_in/' + filename + '.csv', skipinitialspace=True)
DataFrame有一个日期列。是否有一种方法可以创建一个新的DataFrame(或者只是覆盖现有的DataFrame),它只包含日期值落在指定日期范围内或两个指定日期值之间的行?
当前回答
我觉得最好的选择是使用直接检查,而不是使用loc函数:
df = df[(df['date'] > '2000-6-1') & (df['date'] <= '2000-6-10')]
这对我很管用。
使用切片的loc函数的主要问题是限制应该出现在实际值中,否则将导致KeyError。
其他回答
强烈建议将日期列转换为索引。这样做会提供很多便利。一个是很容易选择两个日期之间的行,你可以看到这个例子:
import numpy as np
import pandas as pd
# Dataframe with monthly data between 2016 - 2020
df = pd.DataFrame(np.random.random((60, 3)))
df['date'] = pd.date_range('2016-1-1', periods=60, freq='M')
如果要选择2017-01-01到2019-01-01之间的行,只需将日期列转换为索引:
df.set_index('date', inplace=True)
然后是切片:
df.loc['2017':'2019']
你可以在直接读取csv文件时选择date列作为索引,而不是df.set_index():
df = pd.read_csv('file_name.csv',index_col='date')
你可以使用truncate方法:
dates = pd.date_range('2016-01-01', '2016-01-06', freq='d')
df = pd.DataFrame(index=dates, data={'A': 1})
A
2016-01-01 1
2016-01-02 1
2016-01-03 1
2016-01-04 1
2016-01-05 1
2016-01-06 1
选择两个日期之间的数据:
df.truncate(before=pd.Timestamp('2016-01-02'),
after=pd.Timestamp('2016-01-4'))
输出:
A
2016-01-02 1
2016-01-03 1
2016-01-04 1
灵感来自unutbu
print(df.dtypes) #Make sure the format is 'object'. Rerunning this after index will not show values.
columnName = 'YourColumnName'
df[columnName+'index'] = df[columnName] #Create a new column for index
df.set_index(columnName+'index', inplace=True) #To build index on the timestamp/dates
df.loc['2020-09-03 01:00':'2020-09-06'] #Select range from the index. This is your new Dataframe.
你也可以用between:
df[df.some_date.between(start_date, end_date)]
我觉得最好的选择是使用直接检查,而不是使用loc函数:
df = df[(df['date'] > '2000-6-1') & (df['date'] <= '2000-6-10')]
这对我很管用。
使用切片的loc函数的主要问题是限制应该出现在实际值中,否则将导致KeyError。