我正在从csv创建一个DataFrame,如下所示:

stock = pd.read_csv('data_in/' + filename + '.csv', skipinitialspace=True)

DataFrame有一个日期列。是否有一种方法可以创建一个新的DataFrame(或者只是覆盖现有的DataFrame),它只包含日期值落在指定日期范围内或两个指定日期值之间的行?


当前回答

有两种可能的解决方案:

使用布尔掩码,然后使用df.loc[掩码] 将日期列设置为DatetimeIndex,然后使用df[start_date: end_date]


使用布尔掩码:

确保df['date']是dtype datetime64[ns]的Series:

df['date'] = pd.to_datetime(df['date'])  

制作一个布尔掩码。Start_date和end_date可以是datetime.datetimes, np。datetime64s pd。时间戳,甚至是datetime字符串:

#greater than the start date and smaller than the end date
mask = (df['date'] > start_date) & (df['date'] <= end_date)

选择子数据帧:

df.loc[mask]

或者重新赋值给df

df = df.loc[mask]

例如,

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.random((200,3)))
df['date'] = pd.date_range('2000-1-1', periods=200, freq='D')
mask = (df['date'] > '2000-6-1') & (df['date'] <= '2000-6-10')
print(df.loc[mask])

收益率

            0         1         2       date
153  0.208875  0.727656  0.037787 2000-06-02
154  0.750800  0.776498  0.237716 2000-06-03
155  0.812008  0.127338  0.397240 2000-06-04
156  0.639937  0.207359  0.533527 2000-06-05
157  0.416998  0.845658  0.872826 2000-06-06
158  0.440069  0.338690  0.847545 2000-06-07
159  0.202354  0.624833  0.740254 2000-06-08
160  0.465746  0.080888  0.155452 2000-06-09
161  0.858232  0.190321  0.432574 2000-06-10

使用DatetimeIndex:

如果要按日期进行大量选择,则设置 首先将日期列作为索引。然后可以使用按日期选择行 df.loc [start_date: end_date]。

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.random((200,3)))
df['date'] = pd.date_range('2000-1-1', periods=200, freq='D')
df = df.set_index(['date'])
print(df.loc['2000-6-1':'2000-6-10'])

收益率

                   0         1         2
date                                    
2000-06-01  0.040457  0.326594  0.492136    # <- includes start_date
2000-06-02  0.279323  0.877446  0.464523
2000-06-03  0.328068  0.837669  0.608559
2000-06-04  0.107959  0.678297  0.517435
2000-06-05  0.131555  0.418380  0.025725
2000-06-06  0.999961  0.619517  0.206108
2000-06-07  0.129270  0.024533  0.154769
2000-06-08  0.441010  0.741781  0.470402
2000-06-09  0.682101  0.375660  0.009916
2000-06-10  0.754488  0.352293  0.339337

而Python列表索引,例如seq[start:end]包括开始,但不包括结束,相比之下,Pandas df。Loc [start_date: end_date]在结果中包含两个端点,如果它们在索引中。但是,start_date和end_date都不能在索引中。


还要注意pd。Read_csv有一个parse_dates参数,您可以使用该参数将日期列解析为datetime64s。因此,如果使用parse_dates,则不需要使用df['date'] = pd.to_datetime(df['date'])。

其他回答

你也可以用between:

df[df.some_date.between(start_date, end_date)]

灵感来自unutbu

print(df.dtypes)                                 #Make sure the format is 'object'. Rerunning this after index will not show values.
columnName = 'YourColumnName'
df[columnName+'index'] = df[columnName]          #Create a new column for index
df.set_index(columnName+'index', inplace=True)   #To build index on the timestamp/dates
df.loc['2020-09-03 01:00':'2020-09-06']          #Select range from the index. This is your new Dataframe.

我宁愿不改变df。

一个选项是检索开始和结束日期的索引:

import numpy as np   
import pandas as pd

#Dummy DataFrame
df = pd.DataFrame(np.random.random((30, 3)))
df['date'] = pd.date_range('2017-1-1', periods=30, freq='D')

#Get the index of the start and end dates respectively
start = df[df['date']=='2017-01-07'].index[0]
end = df[df['date']=='2017-01-14'].index[0]

#Show the sliced df (from 2017-01-07 to 2017-01-14)
df.loc[start:end]

结果是:

     0   1   2       date
6  0.5 0.8 0.8 2017-01-07
7  0.0 0.7 0.3 2017-01-08
8  0.8 0.9 0.0 2017-01-09
9  0.0 0.2 1.0 2017-01-10
10 0.6 0.1 0.9 2017-01-11
11 0.5 0.3 0.9 2017-01-12
12 0.5 0.4 0.3 2017-01-13
13 0.4 0.9 0.9 2017-01-14

为了保持解决方案的简单和python性,我建议您尝试一下。

在这种情况下,如果你要经常这样做,最好的解决方案是首先将日期列设置为索引,这将转换DateTimeIndex中的列,并使用以下条件切片任何范围的日期。

import pandas as pd

data_frame = data_frame.set_index('date')

df = data_frame[(data_frame.index > '2017-08-10') & (data_frame.index <= '2017-08-15')]

您可以像这样在日期列上使用isin方法 df (df .isin (pd(“日期”)。date_range (start_date end_date)))

注意:这只适用于日期(正如问题所要求的),而不适用于时间戳。

例子:

import numpy as np   
import pandas as pd

# Make a DataFrame with dates and random numbers
df = pd.DataFrame(np.random.random((30, 3)))
df['date'] = pd.date_range('2017-1-1', periods=30, freq='D')

# Select the rows between two dates
in_range_df = df[df["date"].isin(pd.date_range("2017-01-15", "2017-01-20"))]

print(in_range_df)  # print result

这给了

           0         1         2       date
14  0.960974  0.144271  0.839593 2017-01-15
15  0.814376  0.723757  0.047840 2017-01-16
16  0.911854  0.123130  0.120995 2017-01-17
17  0.505804  0.416935  0.928514 2017-01-18
18  0.204869  0.708258  0.170792 2017-01-19
19  0.014389  0.214510  0.045201 2017-01-20