人们使用什么技巧来管理交互式R会话的可用内存?我使用下面的函数[基于Petr Pikal和David Hinds在2004年发布的r-help列表]来列出(和/或排序)最大的对象,并偶尔rm()其中一些对象。但到目前为止最有效的解决办法是……在64位Linux下运行,有充足的内存。

大家还有什么想分享的妙招吗?请每人寄一份。

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.dim)
    names(out) <- c("Type", "Size", "Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

当前回答

For both speed and memory purposes, when building a large data frame via some complex series of steps, I'll periodically flush it (the in-progress data set being built) to disk, appending to anything that came before, and then restart it. This way the intermediate steps are only working on smallish data frames (which is good as, e.g., rbind slows down considerably with larger objects). The entire data set can be read back in at the end of the process, when all the intermediate objects have been removed.

dfinal <- NULL
first <- TRUE
tempfile <- "dfinal_temp.csv"
for( i in bigloop ) {
    if( !i %% 10000 ) { 
        print( i, "; flushing to disk..." )
        write.table( dfinal, file=tempfile, append=!first, col.names=first )
        first <- FALSE
        dfinal <- NULL   # nuke it
    }

    # ... complex operations here that add data to 'dfinal' data frame  
}
print( "Loop done; flushing to disk and re-reading entire data set..." )
write.table( dfinal, file=tempfile, append=TRUE, col.names=FALSE )
dfinal <- read.table( tempfile )

其他回答

这并没有增加上面的内容,而是以我喜欢的简单和大量注释的风格编写的。它生成一个对象大小排序表,但没有上面例子中给出的一些细节:

#Find the objects       
MemoryObjects = ls()    
#Create an array
MemoryAssessmentTable=array(NA,dim=c(length(MemoryObjects),2))
#Name the columns
colnames(MemoryAssessmentTable)=c("object","bytes")
#Define the first column as the objects
MemoryAssessmentTable[,1]=MemoryObjects
#Define a function to determine size        
MemoryAssessmentFunction=function(x){object.size(get(x))}
#Apply the function to the objects
MemoryAssessmentTable[,2]=t(t(sapply(MemoryAssessmentTable[,1],MemoryAssessmentFunction)))
#Produce a table with the largest objects first
noquote(MemoryAssessmentTable[rev(order(as.numeric(MemoryAssessmentTable[,2]))),])

我在推特上看到了这个,觉得德克的功能太棒了!根据JD Long的回答,为了方便用户阅读,我会这样做:

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.prettysize <- napply(names, function(x) {
                           format(utils::object.size(x), units = "auto") })
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.prettysize, obj.dim)
    names(out) <- c("Type", "Size", "PrettySize", "Length/Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
    
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

lsos()

结果如下:

                      Type   Size PrettySize Length/Rows Columns
pca.res                 PCA 790128   771.6 Kb          7      NA
DF               data.frame 271040   264.7 Kb        669      50
factor.AgeGender   factanal  12888    12.6 Kb         12      NA
dates            data.frame   9016     8.8 Kb        669       2
sd.                 numeric   3808     3.7 Kb         51      NA
napply             function   2256     2.2 Kb         NA      NA
lsos               function   1944     1.9 Kb         NA      NA
load               loadings   1768     1.7 Kb         12       2
ind.sup             integer    448  448 bytes        102      NA
x                 character     96   96 bytes          1      NA

注:我补充的主要部分是(再次改编自JD的回答):

obj.prettysize <- napply(names, function(x) {
                           print(object.size(x), units = "auto") })

I'm fortunate and my large data sets are saved by the instrument in "chunks" (subsets) of roughly 100 MB (32bit binary). Thus I can do pre-processing steps (deleting uninformative parts, downsampling) sequentially before fusing the data set. Calling gc () "by hand" can help if the size of the data get close to available memory. Sometimes a different algorithm needs much less memory. Sometimes there's a trade off between vectorization and memory use. compare: split & lapply vs. a for loop. For the sake of fast & easy data analysis, I often work first with a small random subset (sample ()) of the data. Once the data analysis script/.Rnw is finished data analysis code and the complete data go to the calculation server for over night / over weekend / ... calculation.

运行

for (i in 1:10) 
    gc(reset = T)

还可以帮助R释放未使用但仍未释放的内存。

在将数据框架传递给回归函数的data=参数时,我积极地使用子集参数,只选择所需的变量。如果我忘记向公式和select=向量添加变量,确实会导致一些错误,但由于减少了对象的复制,它仍然节省了大量时间,并显著减少了内存占用。假设我有400万条记录和110个变量(我确实有)。例子:

# library(rms); library(Hmisc) for the cph,and rcs functions
Mayo.PrCr.rbc.mdl <- 
cph(formula = Surv(surv.yr, death) ~ age + Sex + nsmkr + rcs(Mayo, 4) + 
                                     rcs(PrCr.rat, 3) +  rbc.cat * Sex, 
     data = subset(set1HLI,  gdlab2 & HIVfinal == "Negative", 
                           select = c("surv.yr", "death", "PrCr.rat", "Mayo", 
                                      "age", "Sex", "nsmkr", "rbc.cat")
   )            )

通过设置上下文和策略:gdlab2变量是一个逻辑向量,它是为一组实验室测试的所有正常或几乎正常值的数据集中的主题构建的,而HIVfinal是一个字符向量,总结了艾滋病毒的初步和确认测试。