人们使用什么技巧来管理交互式R会话的可用内存?我使用下面的函数[基于Petr Pikal和David Hinds在2004年发布的r-help列表]来列出(和/或排序)最大的对象,并偶尔rm()其中一些对象。但到目前为止最有效的解决办法是……在64位Linux下运行,有充足的内存。

大家还有什么想分享的妙招吗?请每人寄一份。

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.dim)
    names(out) <- c("Type", "Size", "Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

当前回答

运行

for (i in 1:10) 
    gc(reset = T)

还可以帮助R释放未使用但仍未释放的内存。

其他回答

我在推特上看到了这个,觉得德克的功能太棒了!根据JD Long的回答,为了方便用户阅读,我会这样做:

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.prettysize <- napply(names, function(x) {
                           format(utils::object.size(x), units = "auto") })
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.prettysize, obj.dim)
    names(out) <- c("Type", "Size", "PrettySize", "Length/Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
    
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

lsos()

结果如下:

                      Type   Size PrettySize Length/Rows Columns
pca.res                 PCA 790128   771.6 Kb          7      NA
DF               data.frame 271040   264.7 Kb        669      50
factor.AgeGender   factanal  12888    12.6 Kb         12      NA
dates            data.frame   9016     8.8 Kb        669       2
sd.                 numeric   3808     3.7 Kb         51      NA
napply             function   2256     2.2 Kb         NA      NA
lsos               function   1944     1.9 Kb         NA      NA
load               loadings   1768     1.7 Kb         12       2
ind.sup             integer    448  448 bytes        102      NA
x                 character     96   96 bytes          1      NA

注:我补充的主要部分是(再次改编自JD的回答):

obj.prettysize <- napply(names, function(x) {
                           print(object.size(x), units = "auto") })

我真的很欣赏上面的一些答案,遵循@hadley和@Dirk的建议,关闭R并发布源代码,使用命令行,我想出了一个非常适合我的解决方案。我必须处理数百个质谱仪,每个质谱仪占用大约20 Mb的内存,所以我使用了两个R脚本,如下所示:

首先是包装器:

#!/usr/bin/Rscript --vanilla --default-packages=utils

for(l in 1:length(fdir)) {

   for(k in 1:length(fds)) {
     system(paste("Rscript runConsensus.r", l, k))
   }
}

用这个脚本,我基本上控制我的主脚本做什么运行共识。r,然后写出输出的数据答案。这样,每次包装器调用脚本时,似乎会重新打开R并释放内存。

希望能有所帮助。

请注意这些数据。table包的tables()似乎是Dirk的.ls.objects()自定义函数的一个很好的替代品(在前面的回答中有详细说明),尽管只是针对data.frames/tables,而不是矩阵,数组,列表。

这并没有增加上面的内容,而是以我喜欢的简单和大量注释的风格编写的。它生成一个对象大小排序表,但没有上面例子中给出的一些细节:

#Find the objects       
MemoryObjects = ls()    
#Create an array
MemoryAssessmentTable=array(NA,dim=c(length(MemoryObjects),2))
#Name the columns
colnames(MemoryAssessmentTable)=c("object","bytes")
#Define the first column as the objects
MemoryAssessmentTable[,1]=MemoryObjects
#Define a function to determine size        
MemoryAssessmentFunction=function(x){object.size(get(x))}
#Apply the function to the objects
MemoryAssessmentTable[,2]=t(t(sapply(MemoryAssessmentTable[,1],MemoryAssessmentFunction)))
#Produce a table with the largest objects first
noquote(MemoryAssessmentTable[rev(order(as.numeric(MemoryAssessmentTable[,2]))),])

使用knitr和将脚本放在Rmd块中也可以获得一些好处。

我通常将代码划分为不同的块,并选择将检查点保存到缓存或RDS文件中

在那里,你可以设置一个块被保存到“缓存”,或者你可以决定运行或不运行一个特定的块。这样,在第一次运行时,你只能处理“第一部分”,而在另一次执行时,你只能选择“第二部分”,等等。

例子:

part1
```{r corpus, warning=FALSE, cache=TRUE, message=FALSE, eval=TRUE}
corpusTw <- corpus(twitter)  # build the corpus
```
part2
```{r trigrams, warning=FALSE, cache=TRUE, message=FALSE, eval=FALSE}
dfmTw <- dfm(corpusTw, verbose=TRUE, removeTwitter=TRUE, ngrams=3)
```

作为一个副作用,这也可以让你在可重复性方面省去一些麻烦:)