关于如何实际使用Python的itertools.groupby()函数,我还没有找到一个可以理解的解释。我想做的是:

取一个列表——在本例中是一个对象化lxml元素的子元素 根据某些标准将其分成几组 然后分别遍历这些组。

我已经查看了文档,但我很难将它们应用到简单的数字列表之外。

那么,如何使用itertools.groupby()呢?还有其他我应该使用的技巧吗?提供良好的“先决条件”阅读的指针也将受到赞赏。


当前回答

itertools。Groupby是一个对项目进行分组的工具。

从文档中,我们进一步收集了它可能做的事情:

# [k for k, g in groupby('AAAABBBCCDAABBB')]——> AB CDA B # [list(g) for k, g in groupby('AAAABBBCCD')]——> AAAABBBCC

Groupby对象产生键-组对,其中组是一个生成器。

特性

A.将连续的项目组合在一起 B.给定一个已排序的可迭代对象,对一个项目的所有出现进行分组 C.指定如何使用键功能*对项目进行分组

比较

# Define a printer for comparing outputs
>>> def print_groupby(iterable, keyfunc=None):
...    for k, g in it.groupby(iterable, keyfunc):
...        print("key: '{}'--> group: {}".format(k, list(g)))
# Feature A: group consecutive occurrences
>>> print_groupby("BCAACACAADBBB")
key: 'B'--> group: ['B']
key: 'C'--> group: ['C']
key: 'A'--> group: ['A', 'A']
key: 'C'--> group: ['C']
key: 'A'--> group: ['A']
key: 'C'--> group: ['C']
key: 'A'--> group: ['A', 'A']
key: 'D'--> group: ['D']
key: 'B'--> group: ['B', 'B', 'B']

# Feature B: group all occurrences
>>> print_groupby(sorted("BCAACACAADBBB"))
key: 'A'--> group: ['A', 'A', 'A', 'A', 'A']
key: 'B'--> group: ['B', 'B', 'B', 'B']
key: 'C'--> group: ['C', 'C', 'C']
key: 'D'--> group: ['D']

# Feature C: group by a key function
>>> # islower = lambda s: s.islower()                      # equivalent
>>> def islower(s):
...     """Return True if a string is lowercase, else False."""   
...     return s.islower()
>>> print_groupby(sorted("bCAaCacAADBbB"), keyfunc=islower)
key: 'False'--> group: ['A', 'A', 'A', 'B', 'B', 'C', 'C', 'D']
key: 'True'--> group: ['a', 'a', 'b', 'b', 'c']

Uses

Anagrams (see notebook) Binning Group odd and even numbers Group a list by values Remove duplicate elements Find indices of repeated elements in an array Split an array into n-sized chunks Find corresponding elements between two lists Compression algorithm (see notebook)/Run Length Encoding Grouping letters by length, key function (see notebook) Consecutive values over a threshold (see notebook) Find ranges of numbers in a list or continuous items (see docs) Find all related longest sequences Take consecutive sequences that meet a condition (see related post)

注意:后面的几个例子来自Víctor Terrón的PyCon (talk)(西班牙语),“Kung Fu at Dawn with Itertools”。请参见用C语言编写的groupby源代码。

*一个函数,其中所有项都被传递和比较,影响结果。其他具有key函数的对象包括sorted(), max()和min()。


响应

# OP: Yes, you can use `groupby`, e.g. 
[do_something(list(g)) for _, g in groupby(lxml_elements, criteria_func)]

其他回答

Python文档中的示例非常简单:

groups = []
uniquekeys = []
for k, g in groupby(data, keyfunc):
    groups.append(list(g))      # Store group iterator as a list
    uniquekeys.append(k)

在你的例子中,data是一个节点列表,keyfunc是criteria函数的逻辑所在,然后groupby()对数据进行分组。

在调用groupby之前,必须小心地按照条件对数据进行排序,否则它将不起作用。Groupby方法实际上只是遍历一个列表,每当键改变时,它就创建一个新组。

使用itertools的关键是要认识到。Groupby是指只有在可迭代对象中是顺序的项才会被分组在一起。这就是排序工作的原因,因为基本上你在重新排列集合,以便所有满足callback(item)的项现在都按顺序出现在排序的集合中。

也就是说,您不需要对列表进行排序,只需要一个键-值对的集合,其中的值可以根据groupby生成的每个group iterable增长。例如,列表字典。

>>> things = [("vehicle", "bear"), ("animal", "duck"), ("animal", "cactus"), ("vehicle", "speed boat"), ("vehicle", "school bus")]
>>> coll = {}
>>> for k, g in itertools.groupby(things, lambda x: x[0]):
...     coll.setdefault(k, []).extend(i for _, i in g)
...
{'vehicle': ['bear', 'speed boat', 'school bus'], 'animal': ['duck', 'cactus']}

@CaptSolo,我试过你的例子,但没用。

from itertools import groupby 
[(c,len(list(cs))) for c,cs in groupby('Pedro Manoel')]

输出:

[('P', 1), ('e', 1), ('d', 1), ('r', 1), ('o', 1), (' ', 1), ('M', 1), ('a', 1), ('n', 1), ('o', 1), ('e', 1), ('l', 1)]

如你所见,有两个o和两个e,但它们被分成了不同的组。这时我意识到需要对传递给groupby函数的列表进行排序。所以,正确的用法是:

name = list('Pedro Manoel')
name.sort()
[(c,len(list(cs))) for c,cs in groupby(name)]

输出:

[(' ', 1), ('M', 1), ('P', 1), ('a', 1), ('d', 1), ('e', 2), ('l', 1), ('n', 1), ('o', 2), ('r', 1)]

记住,如果列表没有排序,groupby函数将不起作用!

重要提示:您必须首先对数据进行排序。


我没有理解的部分是在例子结构中

groups = []
uniquekeys = []
for k, g in groupby(data, keyfunc):
   groups.append(list(g))    # Store group iterator as a list
   uniquekeys.append(k)

K是当前分组键,g是一个迭代器,可用于遍历由该分组键定义的组。换句话说,groupby迭代器本身返回迭代器。

下面是一个例子,使用了更清晰的变量名:

from itertools import groupby

things = [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", "speed boat"), ("vehicle", "school bus")]

for key, group in groupby(things, lambda x: x[0]):
    for thing in group:
        print("A %s is a %s." % (thing[1], key))
    print("")
    

这将给你输出:

熊是动物。 鸭子是一种动物。 仙人掌是一种植物。 快艇是交通工具。 校车是一种交通工具。

在这个例子中,things是一个元组列表,每个元组中的第一项是第二项所属的组。

groupby()函数有两个参数:(1)要分组的数据和(2)要分组的函数。

这里,lambda x: x[0]告诉groupby()使用每个元组中的第一项作为分组键。

在上面的for语句中,groupby返回三个(键,组迭代器)对——每个唯一键一次。您可以使用返回的迭代器遍历该组中的每一项。

下面是一个略有不同的例子,使用相同的数据,使用列表理解:

for key, group in groupby(things, lambda x: x[0]):
    listOfThings = " and ".join([thing[1] for thing in group])
    print(key + "s:  " + listOfThings + ".")

这将给你输出:

动物:熊和鸭。 植物:仙人掌。 交通工具:快艇、校车。

另一个例子:

for key, igroup in itertools.groupby(xrange(12), lambda x: x // 5):
    print key, list(igroup)

结果

0 [0, 1, 2, 3, 4]
1 [5, 6, 7, 8, 9]
2 [10, 11]

注意,igroup是一个迭代器(文档称之为子迭代器)。

这对于分块生成器很有用:

def chunker(items, chunk_size):
    '''Group items in chunks of chunk_size'''
    for _key, group in itertools.groupby(enumerate(items), lambda x: x[0] // chunk_size):
        yield (g[1] for g in group)

with open('file.txt') as fobj:
    for chunk in chunker(fobj):
        process(chunk)

groupby的另一个例子-当键没有排序时。在以下示例中,xx中的项按yy中的值进行分组。在这种情况下,首先输出一组0,然后是一组1,然后又是一组0。

xx = range(10)
yy = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0]
for group in itertools.groupby(iter(xx), lambda x: yy[x]):
    print group[0], list(group[1])

生产:

0 [0, 1, 2]
1 [3, 4, 5]
0 [6, 7, 8, 9]