我想创建一个空数组,并将项附加到它,一次一个。

xs = []
for item in data:
    xs.append(item)

我可以用NumPy数组使用这种列表风格的符号吗?


当前回答

最简单的方法

输入:

import numpy as np
data = np.zeros((0, 0), dtype=float)   # (rows,cols)
data.shape

输出: (0,0)

输入:

for i in range(n_files):
     data = np.append(data, new_data, axis = 0)

其他回答

可以使用append函数。行:

>>> from numpy import *
>>> a = array([10,20,30])
>>> append(a, [[1,2,3]], axis=0)
array([[10, 20, 30],      
       [1, 2, 3]])

列:

>>> append(a, [[15],[15]], axis=1)
array([[10, 20, 30, 15],      
       [1, 2, 3, 15]])

编辑 当然,正如在其他答案中提到的,除非你在矩阵/数组上做一些处理(例如反转),每次你添加一些东西到它,我只会创建一个列表,添加到它,然后将它转换为数组。

要在NumPy中创建一个空的多维数组(例如,一个2D数组m*n来存储矩阵),如果你不知道你要追加多少行,也不关心Stephen Simmons提到的计算成本(即在每次追加时重新构建数组),你可以将你想追加的维度压缩为0:X = np。空(形状= [0,n])。

这样你可以使用例如(这里m = 5,我们假设我们在创建空矩阵时不知道,n = 2):

import numpy as np

n = 2
X = np.empty(shape=[0, n])

for i in range(5):
    for j  in range(2):
        X = np.append(X, [[i, j]], axis=0)

print X

这将给你:

[[ 0.  0.]
 [ 0.  1.]
 [ 1.  0.]
 [ 1.  1.]
 [ 2.  0.]
 [ 2.  1.]
 [ 3.  0.]
 [ 3.  1.]
 [ 4.  0.]
 [ 4.  1.]]

我认为你想用列表处理大部分工作,然后将结果作为矩阵使用。也许这是一种方法;

ur_list = []
for col in columns:
    ur_list.append(list(col))

mat = np.matrix(ur_list)

根据你使用它的目的,你可能需要指定数据类型(参见'dtype')。

例如,要创建一个8位值的2D数组(适合用作单色图像):

myarray = numpy.empty(shape=(H,W),dtype='u1')

对于RGB图像,包括形状中的颜色通道数:shape=(H,W,3)

您还可以考虑使用numpy进行零初始化。0代替numpy.empty。请看这里的说明。

你可以应用它来构建任何类型的数组,比如0:

a = range(5)
a = [i*0 for i in a]
print a 
[0, 0, 0, 0, 0]