我知道这个问题不太具体。
我想要的只是有人告诉我如何将普通的归并排序转换为就地归并排序(或具有常量额外空间开销的归并排序)。
我所能找到的(在网上)都是说“这太复杂”或“超出了本文的范围”的页面。
唯一已知的就地合并(没有任何额外空间)的方法太复杂,无法简化为实用程序。(从这里拍摄)
即使它太复杂,如何使归并排序的基本概念是什么?
我知道这个问题不太具体。
我想要的只是有人告诉我如何将普通的归并排序转换为就地归并排序(或具有常量额外空间开销的归并排序)。
我所能找到的(在网上)都是说“这太复杂”或“超出了本文的范围”的页面。
唯一已知的就地合并(没有任何额外空间)的方法太复杂,无法简化为实用程序。(从这里拍摄)
即使它太复杂,如何使归并排序的基本概念是什么?
当前回答
我知道我来晚了,但这是我昨天写的一个解决方案。我也在其他地方发布了这个帖子,但这似乎是SO上最受欢迎的就地合并帖子。我也没有在其他地方看到这个算法,所以希望这能帮助到一些人。
这个算法是最简单的形式,所以它可以被理解。它可以显著地调整以获得额外的速度。平均时间复杂度为:稳定的原地阵列归并为O(n.log₂n),整体排序为O(n.(log₂n)²)。
// Stable Merge In Place Sort
//
//
// The following code is written to illustrate the base algorithm. A good
// number of optimizations can be applied to boost its overall speed
// For all its simplicity, it does still perform somewhat decently.
// Average case time complexity appears to be: O(n.(log₂n)²)
#include <stddef.h>
#include <stdio.h>
#define swap(x, y) (t=(x), (x)=(y), (y)=t)
// Both sorted sub-arrays must be adjacent in 'a'
// Assumes that both 'an' and 'bn' are always non-zero
// 'an' is the length of the first sorted section in 'a', referred to as A
// 'bn' is the length of the second sorted section in 'a', referred to as B
static void
merge_inplace(int A[], size_t an, size_t bn)
{
int t, *B = &A[an];
size_t pa, pb; // Swap partition pointers within A and B
// Find the portion to swap. We're looking for how much from the
// start of B can swap with the end of A, such that every element
// in A is less than or equal to any element in B. This is quite
// simple when both sub-arrays come at us pre-sorted
for(pa = an, pb = 0; pa>0 && pb<bn && B[pb] < A[pa-1]; pa--, pb++);
// Now swap last part of A with first part of B according to the
// indicies we found
for (size_t index=pa; index < an; index++)
swap(A[index], B[index-pa]);
// Now merge the two sub-array pairings. We need to check that either array
// didn't wholly swap out the other and cause the remaining portion to be zero
if (pa>0 && (an-pa)>0)
merge_inplace(A, pa, an-pa);
if (pb>0 && (bn-pb)>0)
merge_inplace(B, pb, bn-pb);
} // merge_inplace
// Implements a recursive merge-sort algorithm with an optional
// insertion sort for when the splits get too small. 'n' must
// ALWAYS be 2 or more. It enforces this when calling itself
static void
merge_sort(int a[], size_t n)
{
size_t m = n/2;
// Sort first and second halves only if the target 'n' will be > 1
if (m > 1)
merge_sort(a, m);
if ((n-m)>1)
merge_sort(a+m, n-m);
// Now merge the two sorted sub-arrays together. We know that since
// n > 1, then both m and n-m MUST be non-zero, and so we will never
// violate the condition of not passing in zero length sub-arrays
merge_inplace(a, m, n-m);
} // merge_sort
// Print an array */
static void
print_array(int a[], size_t size)
{
if (size > 0) {
printf("%d", a[0]);
for (size_t i = 1; i < size; i++)
printf(" %d", a[i]);
}
printf("\n");
} // print_array
// Test driver
int
main()
{
int a[] = { 17, 3, 16, 5, 14, 8, 10, 7, 15, 1, 13, 4, 9, 12, 11, 6, 2 };
size_t n = sizeof(a) / sizeof(a[0]);
merge_sort(a, n);
print_array(a, n);
return 0;
} // main
其他回答
包括它的“大结果”,本文描述了就地归并排序的几个变体(PDF):
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5514&rep=rep1&type=pdf
少移动的就地排序
于尔基·卡塔贾宁、托米·
证明了n 元素可以使用O(1)进行排序 额外空间,O(n log n / log log n) 元素移动,nlog2n + O(nlog Log n)比较。这是第一次 需要就地排序算法 O (nlogn)在最坏情况下移动 同时保证O(n log n) 比较,不过由于不变 所涉及的因素是算法 主要是理论兴趣。
我认为这也是相关的。我有一份打印本,是同事传给我的,但我还没读过。它似乎涵盖了基本理论,但我对这个主题不够熟悉,无法判断它有多全面:
http://comjnl.oxfordjournals.org/cgi/content/abstract/38/8/681
最优稳定合并
安东尼奥斯·西姆沃尼斯
本文介绍了如何稳定地进行归并 两个序列A和B,大小为m和 n, m≤n,分别为O(m+n) 作业,O (mlog (n / m + 1)) 比较和只使用一个常数 额外空间的数量。这 结果匹配所有已知的下界…
这是我的C版本:
void mergesort(int *a, int len) {
int temp, listsize, xsize;
for (listsize = 1; listsize <= len; listsize*=2) {
for (int i = 0, j = listsize; (j+listsize) <= len; i += (listsize*2), j += (listsize*2)) {
merge(& a[i], listsize, listsize);
}
}
listsize /= 2;
xsize = len % listsize;
if (xsize > 1)
mergesort(& a[len-xsize], xsize);
merge(a, listsize, xsize);
}
void merge(int *a, int sizei, int sizej) {
int temp;
int ii = 0;
int ji = sizei;
int flength = sizei+sizej;
for (int f = 0; f < (flength-1); f++) {
if (sizei == 0 || sizej == 0)
break;
if (a[ii] < a[ji]) {
ii++;
sizei--;
}
else {
temp = a[ji];
for (int z = (ji-1); z >= ii; z--)
a[z+1] = a[z];
ii++;
a[f] = temp;
ji++;
sizej--;
}
}
}
关键的一步是让合并本身就位。这并不像那些来源说的那么难,但当你尝试的时候,你会失去一些东西。
看看合并的一个步骤:
[…list-sorted…| x列表…| y…发行b…]
我们知道这个排序的序列比其他的都小,x比A中的其他所有的都小,y也比b中的其他所有的都小。在x小于等于y的情况下,你只需要把指针移到A的起始点上。在y小于x的情况下,你必须将y洗牌过整个A来排序。最后一步是代价高昂的原因(退化情况除外)。
它通常更便宜(特别是当数组每个元素实际上只包含单个单词时,例如,一个指向字符串或结构的指针),用一些空间换取时间,并使用一个单独的临时数组来来回排序。
利用c++ std::inplace_merge,就地归并排序可以实现如下:
template< class _Type >
inline void merge_sort_inplace(_Type* src, size_t l, size_t r)
{
if (r <= l) return;
size_t m = l + ( r - l ) / 2; // computes the average without overflow
merge_sort_inplace(src, l, m);
merge_sort_inplace(src, m + 1, r);
std::inplace_merge(src + l, src + m + 1, src + r + 1);
}
更多的排序算法,包括并行实现,可以在https://github.com/DragonSpit/ParallelAlgorithms repo中找到,它是开源的,是免费的。
这个答案有一个代码示例,实现了黄炳超和Michael a . Langston在论文《Practical in - place merge》中描述的算法。我不得不承认我不了解细节,但给定的合并步骤的复杂性是O(n)。
从实际的角度来看,有证据表明,纯就地实现在现实场景中并没有表现得更好。例如,c++标准定义了std::inplace_merge,顾名思义,这是一个就地合并操作。
假设c++库通常都得到了很好的优化,看看它是如何实现的是很有趣的:
1) libstdc++ (GCC代码库的一部分):std::inplace_merge
实现委托给__inplace_merge,通过尝试分配一个临时缓冲区来避免这个问题:
typedef _Temporary_buffer<_BidirectionalIterator, _ValueType> _TmpBuf;
_TmpBuf __buf(__first, __len1 + __len2);
if (__buf.begin() == 0)
std::__merge_without_buffer
(__first, __middle, __last, __len1, __len2, __comp);
else
std::__merge_adaptive
(__first, __middle, __last, __len1, __len2, __buf.begin(),
_DistanceType(__buf.size()), __comp);
否则,它将退回到一个实现(__merge_without_buffer),该实现不需要额外的内存,但不再在O(n)时间内运行。
2) libc++ (Clang代码库的一部分):std::inplace_merge
看起来相似。它委托给一个函数,该函数也尝试分配一个缓冲区。它将根据是否获得了足够的元素来选择实现。常量内存回退函数称为__buffered_inplace_merge。
也许回退仍然是O(n)时间,但关键是如果有临时内存可用,他们就不使用实现。
注意,c++标准通过将所需的复杂度从O(n)降低到O(nlog n),显式地给予实现选择这种方法的自由:
复杂性: 如果有足够的额外内存可用,则正好是N-1个比较。如果内存不足,则比较O(N log N)次。
当然,这并不能证明常数空间在O(n)时间内的合并永远不应该被使用。另一方面,如果它会更快,优化的c++库可能会切换到那种类型的实现。