如何将简单的列表转换为numpy数组?行是单独的子列表,每行包含子列表中的元素。
当前回答
由于这是谷歌上将列表列表转换为Numpy数组的顶级搜索,我将提供以下内容,尽管这个问题已经存在4年了:
>>> x = [[1, 2], [1, 2, 3], [1]]
>>> y = numpy.hstack(x)
>>> print(y)
[1 2 1 2 3 1]
当我第一次想到这样做的时候,我对自己很满意,因为它太简单了。然而,在用一个更大的列表来计时之后,这样做实际上更快:
>>> y = numpy.concatenate([numpy.array(i) for i in x])
>>> print(y)
[1 2 1 2 3 1]
注意,@Bastiaan的答案#1没有形成一个连续的列表,因此我添加了连接。
无论如何……我更喜欢hstack方法,因为它优雅地使用了Numpy。
其他回答
由于这是谷歌上将列表列表转换为Numpy数组的顶级搜索,我将提供以下内容,尽管这个问题已经存在4年了:
>>> x = [[1, 2], [1, 2, 3], [1]]
>>> y = numpy.hstack(x)
>>> print(y)
[1 2 1 2 3 1]
当我第一次想到这样做的时候,我对自己很满意,因为它太简单了。然而,在用一个更大的列表来计时之后,这样做实际上更快:
>>> y = numpy.concatenate([numpy.array(i) for i in x])
>>> print(y)
[1 2 1 2 3 1]
注意,@Bastiaan的答案#1没有形成一个连续的列表,因此我添加了连接。
无论如何……我更喜欢hstack方法,因为它优雅地使用了Numpy。
就用熊猫吧
list(pd.DataFrame(listofstuff).melt().values)
这只适用于列表的列表
如果你有一个列表的列表的列表,你可能想尝试一些沿着
lists(pd.DataFrame(listofstuff).melt().apply(pd.Series).melt().values)
其实很简单:
>>> lists = [[1, 2], [3, 4]]
>>> np.array(lists)
array([[1, 2],
[3, 4]])
>>> numpy.array([[1, 2], [3, 4]])
array([[1, 2], [3, 4]])
同样,在搜索将N层嵌套列表转换为N维数组的问题后,我一无所获,所以这里是我的解决方法:
import numpy as np
new_array=np.array([[[coord for coord in xk] for xk in xj] for xj in xi], ndmin=3) #this case for N=3
推荐文章
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象
- 用Python构建最小的插件架构
- model.eval()在pytorch中做什么?
- Tensorflow 2.0:模块“Tensorflow”没有属性“Session”
- 从环境文件中读入环境变量
- 在OSX 10.11中安装Scrapy时,“OSError: [Errno 1]操作不允许”(El Capitan)(系统完整性保护)
- 如何删除熊猫数据帧的最后一行数据
- 我如何在熊猫中找到数字列?
- 检查pandas数据框架索引中是否存在值
- 计算熊猫数量的最有效方法是什么?
- 如何在python中验证日期字符串格式?
- 用csv模块从csv文件中读取特定的列?
- 使用PyCrypto AES-256加密和解密
- “\d”在正则表达式中是数字吗?