如何将简单的列表转换为numpy数组?行是单独的子列表,每行包含子列表中的元素。
当前回答
>>> numpy.array([[1, 2], [3, 4]])
array([[1, 2], [3, 4]])
其他回答
我有一个等长的列表。即使在那时,伊格纳西奥·巴斯克斯-艾布拉姆斯的答案对我来说也不奏效。我得到了一个一维numpy数组,它的元素是列表。如果你遇到同样的问题,你可以使用下面的方法
使用numpy.vstack
import numpy as np
np_array = np.empty((0,4), dtype='float')
for i in range(10)
row_data = ... # get row_data as list
np_array = np.vstack((np_array, np.array(row_data)))
就用熊猫吧
list(pd.DataFrame(listofstuff).melt().values)
这只适用于列表的列表
如果你有一个列表的列表的列表,你可能想尝试一些沿着
lists(pd.DataFrame(listofstuff).melt().apply(pd.Series).melt().values)
如果列表的列表包含元素数量不同的列表,那么Ignacio Vazquez-Abrams的答案将不起作用。相反,至少有3种选择:
1)创建数组的数组:
x=[[1,2],[1,2,3],[1]]
y=numpy.array([numpy.array(xi) for xi in x])
type(y)
>>><type 'numpy.ndarray'>
type(y[0])
>>><type 'numpy.ndarray'>
2)创建一个列表数组:
x=[[1,2],[1,2,3],[1]]
y=numpy.array(x)
type(y)
>>><type 'numpy.ndarray'>
type(y[0])
>>><type 'list'>
3)首先让列表的长度相等:
x=[[1,2],[1,2,3],[1]]
length = max(map(len, x))
y=numpy.array([xi+[None]*(length-len(xi)) for xi in x])
y
>>>array([[1, 2, None],
>>> [1, 2, 3],
>>> [1, None, None]], dtype=object)
其实很简单:
>>> lists = [[1, 2], [3, 4]]
>>> np.array(lists)
array([[1, 2],
[3, 4]])
同样,在搜索将N层嵌套列表转换为N维数组的问题后,我一无所获,所以这里是我的解决方法:
import numpy as np
new_array=np.array([[[coord for coord in xk] for xk in xj] for xj in xi], ndmin=3) #this case for N=3