我使用spark-csv加载数据到一个DataFrame。我想做一个简单的查询并显示内容:

val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").load("my.csv")
df.registerTempTable("tasks")
results = sqlContext.sql("select col from tasks");
results.show()

山坳似乎被截断了:

scala> results.show();
+--------------------+
|                 col|
+--------------------+
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-06 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:21:...|
|2015-11-16 07:21:...|
|2015-11-16 07:21:...|
+--------------------+

如何显示列的全部内容?


当前回答

在Pyspark中我们可以使用

df.show(truncate=False)这将显示列的完整内容而不进行截断。

df.show(5,truncate=False)这将显示前五行的全部内容。

其他回答

results.show(20,false)在Scala中为我做到了这一点。

其他的解都很好。如果这些是你的目标:

没有列的截断, 没有行损失, 快, 非常高效。

这两行很有用……

    df.persist
    df.show(df.count, false) // in Scala or 'False' in Python

通过持久化,当使用持久化或缓存来维护执行器内部的临时底层数据帧结构时,执行器的两个操作count和show会更快更有效。请参阅有关持久化和缓存的更多信息。

用Spark python的方式,记住:

如果你必须从数据帧中显示数据,使用show(truncate=False)方法。 否则,如果你必须从流数据帧视图(结构化流)显示数据,使用writeStream.format("console")。option("truncate", False).start()方法

希望它能帮助到一些人。

在c#选项中("truncate", false)不会截断输出中的数据。

StreamingQuery query = spark
                    .Sql("SELECT * FROM Messages")
                    .WriteStream()
                    .OutputMode("append")
                    .Format("console")
                    .Option("truncate", false)
                    .Start();

结果。Show (20, false)不会截断。检查来源

20是在不带任何参数的情况下调用show()时显示的默认行数。