我想在Python中每60秒重复执行一个函数(就像Objective C中的NSTimer或JS中的setTimeout)。这段代码将作为守护进程运行,有效地类似于使用cron每分钟调用python脚本,但不需要用户设置。

在这个关于用Python实现的cron的问题中,解决方案似乎只有效地使()休眠x秒。我不需要这么高级的功能,所以也许这样的东西可以工作

while True:
    # Code executed here
    time.sleep(60)

这段代码是否存在任何可预见的问题?


当前回答

它和cron之间的主要区别是异常会永久地杀死守护进程。您可能希望使用异常捕获器和记录器进行包装。

其他回答

你可能会考虑Twisted,它是一个实现了Reactor Pattern的Python网络库。

from twisted.internet import task, reactor

timeout = 60.0 # Sixty seconds

def doWork():
    #do work here
    pass

l = task.LoopingCall(doWork)
l.start(timeout) # call every sixty seconds

reactor.run()

虽然“While True: sleep(60)”可能会工作,Twisted可能已经实现了许多你最终需要的功能(如bobince指出的守护进程化、日志记录或异常处理),并且可能是一个更健壮的解决方案

以下是MestreLion代码的改编版本。 除了原来的函数,这段代码:

1)添加用于在特定时间触发计时器的first_interval(调用者需要计算first_interval并传递进来)

2)在原代码中解决一个竞态条件。在原始代码中,如果控制线程未能取消正在运行的计时器(“停止计时器,并取消计时器动作的执行。这只会在计时器仍处于等待阶段时起作用。”引用自https://docs.python.org/2/library/threading.html),计时器将无休止地运行。

class RepeatedTimer(object):
def __init__(self, first_interval, interval, func, *args, **kwargs):
    self.timer      = None
    self.first_interval = first_interval
    self.interval   = interval
    self.func   = func
    self.args       = args
    self.kwargs     = kwargs
    self.running = False
    self.is_started = False

def first_start(self):
    try:
        # no race-condition here because only control thread will call this method
        # if already started will not start again
        if not self.is_started:
            self.is_started = True
            self.timer = Timer(self.first_interval, self.run)
            self.running = True
            self.timer.start()
    except Exception as e:
        log_print(syslog.LOG_ERR, "timer first_start failed %s %s"%(e.message, traceback.format_exc()))
        raise

def run(self):
    # if not stopped start again
    if self.running:
        self.timer = Timer(self.interval, self.run)
        self.timer.start()
    self.func(*self.args, **self.kwargs)

def stop(self):
    # cancel current timer in case failed it's still OK
    # if already stopped doesn't matter to stop again
    if self.timer:
        self.timer.cancel()
    self.running = False

它和cron之间的主要区别是异常会永久地杀死守护进程。您可能希望使用异常捕获器和记录器进行包装。

像这样将你的时间循环锁定到系统时钟上:

import time
starttime = time.time()
while True:
    print("tick")
    time.sleep(60.0 - ((time.time() - starttime) % 60.0))
import time, traceback

def every(delay, task):
  next_time = time.time() + delay
  while True:
    time.sleep(max(0, next_time - time.time()))
    try:
      task()
    except Exception:
      traceback.print_exc()
      # in production code you might want to have this instead of course:
      # logger.exception("Problem while executing repetitive task.")
    # skip tasks if we are behind schedule:
    next_time += (time.time() - next_time) // delay * delay + delay

def foo():
  print("foo", time.time())

every(5, foo)

如果你想在不阻塞剩余代码的情况下这样做,你可以使用这个让它在自己的线程中运行:

import threading
threading.Thread(target=lambda: every(5, foo)).start()

该解决方案结合了其他解决方案中很少结合的几个特性:

Exception handling: As far as possible on this level, exceptions are handled properly, i. e. get logged for debugging purposes without aborting our program. No chaining: The common chain-like implementation (for scheduling the next event) you find in many answers is brittle in the aspect that if anything goes wrong within the scheduling mechanism (threading.Timer or whatever), this will terminate the chain. No further executions will happen then, even if the reason of the problem is already fixed. A simple loop and waiting with a simple sleep() is much more robust in comparison. No drift: My solution keeps an exact track of the times it is supposed to run at. There is no drift depending on the execution time (as in many other solutions). Skipping: My solution will skip tasks if one execution took too much time (e. g. do X every five seconds, but X took 6 seconds). This is the standard cron behavior (and for a good reason). Many other solutions then simply execute the task several times in a row without any delay. For most cases (e. g. cleanup tasks) this is not wished. If it is wished, simply use next_time += delay instead.