在Java中,IoC / DI是一种非常常见的实践,广泛应用于web应用程序、几乎所有可用的框架和Java EE中。另一方面,也有很多大型的Python web应用程序,但除了Zope(我听说它的编码真的很糟糕)之外,IoC在Python世界中似乎并不常见。(如果你认为我是错的,请举一些例子)。

当然,有一些流行的Java IoC框架的克隆可用于Python,例如springpython。但它们似乎都没有被实际使用。至少,我从来没有碰到过Django或sqlalchemy+<插入您最喜欢的wsgi工具箱在这里>的基于web应用程序使用类似的东西。

在我看来,IoC有合理的优势,可以很容易地取代django-default-user-model,但在Python中广泛使用接口类和IoC看起来有点奇怪,而且不»pythonic«。但是也许有人有更好的解释,为什么IoC在Python中没有被广泛使用。


当前回答

实际上,使用DI编写足够干净和紧凑的代码是相当容易的(我想知道,它会/保持python化吗,但无论如何:)),例如,我实际上更喜欢这种编码方式:

def polite(name_str):
    return "dear " + name_str

def rude(name_str):
    return name_str + ", you, moron"

def greet(name_str, call=polite):
    print "Hello, " + call(name_str) + "!"

_

>>greet("Peter")
Hello, dear Peter!
>>greet("Jack", rude)
Hello, Jack, you, moron!

是的,这可以被看作是参数化函数/类的一种简单形式,但它确实起作用了。所以,也许Python默认包含的电池在这里也足够了。

另外,我还发布了一个更大的例子,说明了这种简单的方法在Python中动态计算简单的布尔逻辑。

其他回答

在我看来,像依赖注入这样的事情是僵化和过于复杂的框架的症状。当代码主体变得过于沉重而难以更改时,你会发现自己不得不选择其中的一小部分,为它们定义接口,然后允许人们通过插入这些接口的对象来改变行为。这很好,但最好在一开始就避免这种复杂性。

这也是静态类型语言的症状。当您必须表达抽象的唯一工具是继承时,那么您几乎到处都在使用继承。话虽如此,c++与之非常相似,但从未像Java开发人员那样对构建器和接口着迷。人们很容易以编写太多泛型代码为代价,实现灵活和可扩展的梦想,而这些代码几乎没有真正的好处。我认为这是文化问题。

通常我认为Python人习惯于为工作选择正确的工具,这是一个连贯而简单的整体,而不是一个真正的工具(带有一千种可能的插件),它可以做任何事情,但提供了令人眼花缭乱的可能配置排列。在必要的地方仍然有可互换的部分,但由于duck-typing的灵活性和语言的相对简单性,不需要定义固定接口的大形式主义。

Haven't used Python in several years, but I would say that it has more to do with it being a dynamically typed language than anything else. For a simple example, in Java, if I wanted to test that something wrote to standard out appropriately I could use DI and pass in any PrintStream to capture the text being written and verify it. When I'm working in Ruby, however, I can dynamically replace the 'puts' method on STDOUT to do the verify, leaving DI completely out of the picture. If the only reason I'm creating an abstraction is to test the class that's using it (think File system operations or the clock in Java) then DI/IoC creates unnecessary complexity in the solution.

部分原因是模块系统在Python中的工作方式。你可以免费获得一种“单例”,只需从模块中导入它。在模块中定义一个对象的实际实例,然后任何客户端代码都可以导入它,并实际获得一个工作的、完全构造/填充的对象。

这与Java相反,在Java中不导入对象的实际实例。这意味着你总是必须自己实例化它们(或使用某种IoC/DI风格的方法)。您可以通过使用静态工厂方法(或实际的工厂类)来减轻必须自己实例化所有东西的麻烦,但这样您仍然会产生每次实际创建新方法的资源开销。

实际上,使用DI编写足够干净和紧凑的代码是相当容易的(我想知道,它会/保持python化吗,但无论如何:)),例如,我实际上更喜欢这种编码方式:

def polite(name_str):
    return "dear " + name_str

def rude(name_str):
    return name_str + ", you, moron"

def greet(name_str, call=polite):
    print "Hello, " + call(name_str) + "!"

_

>>greet("Peter")
Hello, dear Peter!
>>greet("Jack", rude)
Hello, Jack, you, moron!

是的,这可以被看作是参数化函数/类的一种简单形式,但它确实起作用了。所以,也许Python默认包含的电池在这里也足够了。

另外,我还发布了一个更大的例子,说明了这种简单的方法在Python中动态计算简单的布尔逻辑。

你可以手动使用Python进行依赖注入,但手动方法有其缺点:

大量的样板代码来进行连接。你可以使用Python的动态特性来进行注入,但这样你就失去了IDE的支持(例如,PyCharm中的Ctrl+Space),并且你会使代码更难理解和调试 没有标准:每个程序员都有自己解决相同问题的方法,这导致了重新发明轮子,理解彼此的代码很快就会成为一种痛苦。依赖注入库为插件提供了简单的框架

要做到这一切,我们需要一个依赖注入框架,例如这个https://python-dependency-injector.ets-labs.org/index.html似乎是Python最成熟的依赖注入框架。

对于较小的应用程序,DI容器是不必要的,对于任何有几百行代码或更多的东西,DI容器是必须的,以保持你的代码可维护性。