在Java中,IoC / DI是一种非常常见的实践,广泛应用于web应用程序、几乎所有可用的框架和Java EE中。另一方面,也有很多大型的Python web应用程序,但除了Zope(我听说它的编码真的很糟糕)之外,IoC在Python世界中似乎并不常见。(如果你认为我是错的,请举一些例子)。

当然,有一些流行的Java IoC框架的克隆可用于Python,例如springpython。但它们似乎都没有被实际使用。至少,我从来没有碰到过Django或sqlalchemy+<插入您最喜欢的wsgi工具箱在这里>的基于web应用程序使用类似的东西。

在我看来,IoC有合理的优势,可以很容易地取代django-default-user-model,但在Python中广泛使用接口类和IoC看起来有点奇怪,而且不»pythonic«。但是也许有人有更好的解释,为什么IoC在Python中没有被广泛使用。


当前回答

看看FastAPI,它内置了依赖注入。例如:

from fastapi import Depends, FastAPI

async def get_db():
    db = DBSession()
    try:
        yield db
    except Exception:
        db.rollback()
        raise
    finally:
        db.close()

app = FastAPI()

@app.get("/items")
def get_items(db=Depends(get_db)):
    return db.get_items()

其他回答

实际上,使用DI编写足够干净和紧凑的代码是相当容易的(我想知道,它会/保持python化吗,但无论如何:)),例如,我实际上更喜欢这种编码方式:

def polite(name_str):
    return "dear " + name_str

def rude(name_str):
    return name_str + ", you, moron"

def greet(name_str, call=polite):
    print "Hello, " + call(name_str) + "!"

_

>>greet("Peter")
Hello, dear Peter!
>>greet("Jack", rude)
Hello, Jack, you, moron!

是的,这可以被看作是参数化函数/类的一种简单形式,但它确实起作用了。所以,也许Python默认包含的电池在这里也足够了。

另外,我还发布了一个更大的例子,说明了这种简单的方法在Python中动态计算简单的布尔逻辑。

我支持“Jörg W Mittag”的回答:“DI/IoC的Python实现是如此的轻量级,以至于它完全消失了”。

为了支持这一说法,看看Martin Fowler从Java移植到Python的著名示例:Python:Design_Patterns:Inversion_of_Control

从上面的链接中可以看到,Python中的“Container”可以用8行代码编写:

class Container:
    def __init__(self, system_data):
        for component_name, component_class, component_args in system_data:
            if type(component_class) == types.ClassType:
                args = [self.__dict__[arg] for arg in component_args]
                self.__dict__[component_name] = component_class(*args)
            else:
                self.__dict__[component_name] = component_class

我的观点是,在大多数Python应用程序中,您不需要它,即使您需要它,许多讨厌Java的人(以及自认为是开发人员的无能的摆弄者)很可能认为它很糟糕,只是因为它在Java中很受欢迎。

An IoC system is actually useful when you have complex networks of objects, where each object may be a dependency for several others and, in turn, be itself a dependant on other objects. In such a case you'll want to define all these objects once and have a mechanism to put them together automatically, based on as many implicit rules as possible. If you also have configuration to be defined in a simple way by the application user/administrator, that's an additional reason to desire an IoC system that can read its components from something like a simple XML file (which would be the configuration).

典型的Python应用程序要简单得多,只有一堆脚本,没有这么复杂的体系结构。就我个人而言,我知道IoC实际上是什么(与那些在这里写下某些答案的人相反),在我有限的Python经验中,我从来没有觉得需要它(而且我不会在任何地方都使用Spring,当它所提供的优势不足以证明它的开发开销时)。

也就是说,在Python中,IoC方法实际上是有用的,事实上,我在这里读到Django使用了它。

上述相同的推理可以应用于Java世界中的面向方面编程,不同的是,AOP真正有价值的情况的数量甚至更有限。

IoC和DI在成熟的Python代码中非常常见。由于鸭子类型,您不需要框架来实现依赖注入。

最好的例子是如何使用settings.py设置Django应用程序:

# settings.py
CACHES = {
    'default': {
        'BACKEND': 'django_redis.cache.RedisCache',
        'LOCATION': REDIS_URL + '/1',
    },
    'local': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'snowflake',
    }
}

Django Rest Framework充分利用了DI:

class FooView(APIView):
    # The "injected" dependencies:
    permission_classes = (IsAuthenticated, )
    throttle_classes = (ScopedRateThrottle, )
    parser_classes = (parsers.FormParser, parsers.JSONParser, parsers.MultiPartParser)
    renderer_classes = (renderers.JSONRenderer,)

    def get(self, request, *args, **kwargs):
        pass

    def post(self, request, *args, **kwargs):
        pass

让我提醒一下(来源):

“依赖注入”是一个5美分概念的25美元术语。[…依赖注入意味着给一个对象它的实例变量。[…]。

我认为由于python的动态特性,人们并不经常看到对另一个动态框架的需求。当一个类继承了new-style 'object'时,你可以动态地创建一个新变量(https://wiki.python.org/moin/NewClassVsClassicClass)。

即。 在普通python中:

#application.py
class Application(object):
    def __init__(self):
        pass

#main.py
Application.postgres_connection = PostgresConnection()

#other.py
postgres_connection = Application.postgres_connection
db_data = postgres_connection.fetchone()

不过,看看https://github.com/noodleflake/pyioc,这可能就是你要找的。

即pyioc

from libs.service_locator import ServiceLocator

#main.py
ServiceLocator.register(PostgresConnection)

#other.py
postgres_connection = ServiceLocator.resolve(PostgresConnection)
db_data = postgres_connection.fetchone()