在Java中,IoC / DI是一种非常常见的实践,广泛应用于web应用程序、几乎所有可用的框架和Java EE中。另一方面,也有很多大型的Python web应用程序,但除了Zope(我听说它的编码真的很糟糕)之外,IoC在Python世界中似乎并不常见。(如果你认为我是错的,请举一些例子)。

当然,有一些流行的Java IoC框架的克隆可用于Python,例如springpython。但它们似乎都没有被实际使用。至少,我从来没有碰到过Django或sqlalchemy+<插入您最喜欢的wsgi工具箱在这里>的基于web应用程序使用类似的东西。

在我看来,IoC有合理的优势,可以很容易地取代django-default-user-model,但在Python中广泛使用接口类和IoC看起来有点奇怪,而且不»pythonic«。但是也许有人有更好的解释,为什么IoC在Python中没有被广泛使用。


当前回答

IoC/DI是一个设计概念,但不幸的是,它经常被认为是一个适用于某些语言(或类型系统)的概念。我希望看到依赖注入容器在Python中变得更加流行。有Spring,但它是一个超级框架,似乎是Java概念的直接移植,没有太多考虑“Python方式”。

鉴于Python 3中的注释,我决定尝试一个功能齐全但简单的依赖注入容器:https://github.com/zsims/dic。它基于。net依赖注入容器的一些概念(如果你曾经在那个领域玩过,IMO是很棒的),但与Python概念发生了变化。

其他回答

实际上,使用DI编写足够干净和紧凑的代码是相当容易的(我想知道,它会/保持python化吗,但无论如何:)),例如,我实际上更喜欢这种编码方式:

def polite(name_str):
    return "dear " + name_str

def rude(name_str):
    return name_str + ", you, moron"

def greet(name_str, call=polite):
    print "Hello, " + call(name_str) + "!"

_

>>greet("Peter")
Hello, dear Peter!
>>greet("Jack", rude)
Hello, Jack, you, moron!

是的,这可以被看作是参数化函数/类的一种简单形式,但它确实起作用了。所以,也许Python默认包含的电池在这里也足够了。

另外,我还发布了一个更大的例子,说明了这种简单的方法在Python中动态计算简单的布尔逻辑。

Django很好地利用了反转控制。例如,由配置文件选择数据库服务器,然后框架向数据库客户机提供适当的数据库包装器实例。

区别在于Python有第一类类型。数据类型(包括类)本身就是对象。如果您想要使用特定的类,只需命名类即可。例如:

if config_dbms_name == 'postgresql':
    import psycopg
    self.database_interface = psycopg
elif config_dbms_name == 'mysql':
    ...

之后的代码可以通过以下方式创建数据库接口:

my_db_connection = self.database_interface()
# Do stuff with database.

与Java和c++需要的样板工厂函数不同,Python只需要一两行普通代码就可以完成。这就是函数式编程与命令式编程的优势所在。

IoC/DI是一个设计概念,但不幸的是,它经常被认为是一个适用于某些语言(或类型系统)的概念。我希望看到依赖注入容器在Python中变得更加流行。有Spring,但它是一个超级框架,似乎是Java概念的直接移植,没有太多考虑“Python方式”。

鉴于Python 3中的注释,我决定尝试一个功能齐全但简单的依赖注入容器:https://github.com/zsims/dic。它基于。net依赖注入容器的一些概念(如果你曾经在那个领域玩过,IMO是很棒的),但与Python概念发生了变化。

在我看来,像依赖注入这样的事情是僵化和过于复杂的框架的症状。当代码主体变得过于沉重而难以更改时,你会发现自己不得不选择其中的一小部分,为它们定义接口,然后允许人们通过插入这些接口的对象来改变行为。这很好,但最好在一开始就避免这种复杂性。

这也是静态类型语言的症状。当您必须表达抽象的唯一工具是继承时,那么您几乎到处都在使用继承。话虽如此,c++与之非常相似,但从未像Java开发人员那样对构建器和接口着迷。人们很容易以编写太多泛型代码为代价,实现灵活和可扩展的梦想,而这些代码几乎没有真正的好处。我认为这是文化问题。

通常我认为Python人习惯于为工作选择正确的工具,这是一个连贯而简单的整体,而不是一个真正的工具(带有一千种可能的插件),它可以做任何事情,但提供了令人眼花缭乱的可能配置排列。在必要的地方仍然有可互换的部分,但由于duck-typing的灵活性和语言的相对简单性,不需要定义固定接口的大形式主义。

看看FastAPI,它内置了依赖注入。例如:

from fastapi import Depends, FastAPI

async def get_db():
    db = DBSession()
    try:
        yield db
    except Exception:
        db.rollback()
        raise
    finally:
        db.close()

app = FastAPI()

@app.get("/items")
def get_items(db=Depends(get_db)):
    return db.get_items()