不管我们喜欢与否,我们开发人员中的许多人(如果不是大多数的话)都经常使用数据库,或者有一天可能不得不使用数据库。考虑到大量的误用和滥用,以及每天出现的大量与数据库相关的问题,公平地说,有一些概念是开发人员应该知道的——即使他们今天不设计或使用数据库。
关于数据库,开发人员和其他软件专业人员应该知道的一个重要概念是什么?
不管我们喜欢与否,我们开发人员中的许多人(如果不是大多数的话)都经常使用数据库,或者有一天可能不得不使用数据库。考虑到大量的误用和滥用,以及每天出现的大量与数据库相关的问题,公平地说,有一些概念是开发人员应该知道的——即使他们今天不设计或使用数据库。
关于数据库,开发人员和其他软件专业人员应该知道的一个重要概念是什么?
当前回答
关于以下对Walter M。的回答:
“写得很好!历史视角对于当时没有做数据库工作的人(比如我)来说非常有用。”
历史观点在某种意义上是绝对重要的。“忘记历史的人,注定要重蹈覆辙。”XML重复着过去的层次错误,图形数据库重复着过去的网络错误,OO系统迫使用户使用层次模型,而每个人即使只有十分之一的大脑都应该知道层次模型不适合真实世界的通用表示,等等,等等。
至于问题本身:
每个数据库开发人员都应该知道“关系型”不等于“SQL”。然后他们就会明白为什么他们会被DBMS供应商如此失望,为什么他们应该告诉同样的供应商想出更好的东西(例如真正的关系型DBMS),如果他们想继续从他们的客户那里为这些蹩脚的软件吸走大量的钱)。
每个数据库开发人员都应该了解关系代数的所有知识。这样,就不会再有开发者在Stack Overflow网站上发布“我不知道如何做我的工作,希望别人帮我做”这样的愚蠢问题了。
其他回答
归一化
我总是很沮丧地看到有人努力编写一个过度复杂的查询,而这个查询用标准化的设计可以完全简单明了(“显示每个地区的总销售额。”)。
如果您在一开始就理解了这一点,并相应地进行设计,您将在以后为自己省去许多痛苦。在规范化之后,很容易对性能进行反规范化;要规范化一个从一开始就不是这样设计的数据库并不容易。
至少,您应该知道3NF是什么以及如何实现它。对于大多数事务性数据库,这是使查询易于编写和保持良好性能之间的一个很好的平衡。
非常好的问题。让我们看看,首先,没有完全理解连接的人不应该考虑查询数据库。这就像开车时不知道方向盘和刹车在哪里一样。您还需要了解数据类型以及如何选择最佳数据类型。
开发人员应该了解的另一件事是,在设计数据库时,你应该记住三件事:
Data integrity - if the data can't be relied on you essentially have no data - this means do not put required logic in the application as many other sources may touch the database. Constraints, foreign keys and sometimes triggers are necessary to data integrity. Don't fail to use them because you don't like them or don't want to be bothered to understand them. Performance - it is very hard to refactor a poorly performing database and performance should be considered from the start. There are many ways to do the same query and some are known to be faster almost always, it is short-sighted not to learn and use these ways. Read some books on performance tuning before designing queries or database structures. Security - this data is the life-blood of your company, it also frequently contains personal information that can be stolen. Learn to protect your data from SQL injection attacks and fraud and identity theft.
在查询数据库时,很容易得到错误的答案。确保完全理解数据模型。请记住,实际决策通常是基于查询返回的数据做出的。当它是错误的,就会做出错误的商业决策。你可能会因为糟糕的询问而杀死一家公司,或者失去一个大客户。数据是有意义的,但开发者往往忘记了这一点。
数据几乎永远不会消失,考虑的是随着时间的推移存储数据,而不是今天如何获取数据。数据库在拥有10万条记录时运行良好,十年后可能就不那么好了。应用程序很少能像数据一样持久。这就是为什么性能设计如此重要的原因之一。
您的数据库可能需要应用程序不需要看到的字段。比如用于复制的guid,插入的日期字段。等。您还可能需要存储更改的历史,以及谁在什么时候做了更改,并能够从这个存储库中恢复坏的更改。在向网站询问如何修复忘记在更新中添加where子句并更新整个表的问题之前,请考虑一下您打算如何做到这一点。
永远不要在比生产版本更新的数据库版本中进行开发。永远、永远、永远不要直接针对生产数据库进行开发。
如果没有数据库管理员,请确保有人正在进行备份,并且知道如何恢复备份,并且已经测试过如何恢复备份。
数据库代码就是代码,没有理由不把它像其他代码一样放在源代码控制中。
除了他们使用的语法和概念选项(例如连接、触发器和存储过程)之外,对于每个使用数据库的开发人员来说,有一件事是至关重要的:
了解您的引擎将如何执行您正在编写的查询。
我认为这很重要的原因仅仅是生产的稳定性。您应该知道您的代码是如何执行的,这样您就不会在等待一个长函数完成时停止线程中的所有执行,那么为什么您不想知道您的查询将如何影响数据库、程序甚至服务器呢?
This is actually something that has hit my R&D team more times than missing semicolons or the like. The presumtion is the query will execute quickly because it does on their development system with only a few thousand rows in the tables. Even if the production database is the same size, it is more than likely going to be used a lot more, and thus suffer from other constraints like multiple users accessing it at the same time, or something going wrong with another query elsewhere, thus delaying the result of this query.
即使是像连接如何影响查询性能这样简单的事情,在生产中也是非常宝贵的。许多数据库引擎的许多特性在概念上让事情变得更简单,但如果没有考虑清楚,可能会在性能上带来问题。
了解数据库引擎的执行过程,并为之制定计划。
基本的索引
当看到一个表或整个数据库没有索引,或者索引是任意的/无用的时,我总是感到震惊。即使你不是在设计数据库,只是需要编写一些查询,至少理解以下内容仍然是至关重要的:
数据库中索引了什么,没有索引什么: 扫描类型之间的差异,它们是如何选择的,以及您编写查询的方式如何影响这种选择; 覆盖率的概念(为什么你不应该只写SELECT *); 聚类索引和非聚类索引之间的区别; 为什么更多/更大的指数不一定更好; 为什么应该尽量避免在函数中包装筛选器列。
设计人员还应该注意常见的索引反模式,例如:
Access反模式(逐个索引每一列) Catch-All反模式(在所有或大多数列上建立一个大型索引,显然是在错误的印象中创建的,认为它会加速涉及这些列的所有可以想象的查询)。
数据库索引的质量——以及您在编写查询时是否利用了它——是迄今为止最重要的性能部分。在SO和其他论坛上发布的抱怨性能不佳的问题中,10个问题中有9个总是被证明是由于索引不好或表达式不sargable。
索引的工作原理
这可能不是最重要的,但肯定是最被低估的话题。
索引的问题在于SQL教程通常根本不会提到它们,而且所有的玩具示例都可以在没有索引的情况下工作。
即使更有经验的开发人员也可以编写相当好的(和复杂的)SQL,而不需要了解更多关于索引的知识,而只是“索引使查询更快”。
这是因为SQL数据库作为黑盒的工作做得非常好:
告诉我你需要什么(给我SQL),我来处理。
这可以很好地检索正确的结果。SQL的作者不需要知道系统在幕后做什么——直到一切变得非常缓慢.....
这时索引就成了一个话题。但这通常很晚了,而且某些人(一些公司?)已经遇到了真正的问题。
这就是为什么我认为索引是在使用数据库时不能忘记的首要主题。不幸的是,它很容易忘记。
免责声明
这些论点是从我的免费电子书“使用索引,卢克”的序言中借来的。我花了很多时间来解释索引是如何工作的,以及如何正确地使用它们。