我有以下数据帧,其中一列是一个对象(列表类型单元格):

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})

输出:

   A       B
0  1  [1, 2]
1  2  [1, 2]

我的期望输出是:

   A  B
0  1  1
1  1  2
3  2  1
4  2  2

我该怎么做才能做到这一点呢?


相关的问题

Pandas列的列表,为每个列表元素创建一行

很好的问题和答案,但只处理一个列与列表(在我的回答自定义函数将工作于多个列,也接受的答案是使用最耗时的应用,这是不建议的,检查更多信息当我(不)想要使用熊猫应用()在我的代码?)


当前回答

 demo = {'set1':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set2':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set3': {'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}}
 df = pd.DataFrame.from_dict(demo, orient='index') 

 print(df.head())
 my_list=[]
 df2=pd.DataFrame(columns=['set','t1','t2','t3'])

 for key,item in df.iterrows():
    t1=item.t1
    t2=item.t2
    t3=item.t3
    mat1=np.matrix([t1,t2,t3])
    row1=[key,mat1[0,0],mat1[0,1],mat1[0,2]]
    df2.loc[len(df2)]=row1
    row2=[key,mat1[1,0],mat1[1,1],mat1[1,2]]
    df2.loc[len(df2)]=row2
    row3=[key,mat1[2,0],mat1[2,1],mat1[2,2]]
    df2.loc[len(df2)]=row3

print(df2) 

set t1 t2 t3
0  set1  1  2  3
1  set1  4  5  6
2  set1  7  8  9
3  set2  1  2  3
4  set2  4  5  6
5  set2  7  8  9
6  set3  1  2  3
7  set3  4  5  6
8  set3  7  8  9   

其他回答

我有另一个好方法来解决这个问题当你有不止一列要爆炸的时候。

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]], 'C':[[1,2,3],[1,2,3]]})

print(df)
   A       B          C
0  1  [1, 2]  [1, 2, 3]
1  2  [1, 2]  [1, 2, 3]

我想爆炸B和C列,首先爆炸B,第二爆炸C,然后从原来的df中去掉B和C。之后,我将在3个dfs上做一个索引连接。

explode_b = df.explode('B')['B']
explode_c = df.explode('C')['C']
df = df.drop(['B', 'C'], axis=1)
df = df.join([explode_b, explode_c])

下面是一个简单的水平爆炸函数,基于@BEN_YO的答案。

import typing
import pandas as pd

def horizontal_explode(df: pd.DataFrame, col_name: str, new_columns: typing.Union[list, None]=None) -> pd.DataFrame:
    t = pd.DataFrame(df[col_name].tolist(), columns=new_columns, index=df.index)
    return pd.concat([df, t], axis=1)

运行示例:

items = [
    ["1", ["a", "b", "c"]],
    ["2", ["d", "e", "f"]]
]

df = pd.DataFrame(items, columns = ["col1", "col2"])
print(df)

t = horizontal_explode(df=df, col_name="col2")
del t["col2"]
print(t)

t = horizontal_explode(df=df, col_name="col2", new_columns=["new_col1", "new_col2", "new_col3"])
del t["col2"]
print(t)

这是相关的输出:

  col1       col2
0    1  [a, b, c]
1    2  [d, e, f]

  col1  0  1  2
0    1  a  b  c
1    2  d  e  f

  col1 new_col1 new_col2 new_col3
0    1        a        b        c
1    2        d        e        f
 demo = {'set1':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set2':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set3': {'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}}
 df = pd.DataFrame.from_dict(demo, orient='index') 

 print(df.head())
 my_list=[]
 df2=pd.DataFrame(columns=['set','t1','t2','t3'])

 for key,item in df.iterrows():
    t1=item.t1
    t2=item.t2
    t3=item.t3
    mat1=np.matrix([t1,t2,t3])
    row1=[key,mat1[0,0],mat1[0,1],mat1[0,2]]
    df2.loc[len(df2)]=row1
    row2=[key,mat1[1,0],mat1[1,1],mat1[1,2]]
    df2.loc[len(df2)]=row2
    row3=[key,mat1[2,0],mat1[2,1],mat1[2,2]]
    df2.loc[len(df2)]=row3

print(df2) 

set t1 t2 t3
0  set1  1  2  3
1  set1  4  5  6
2  set1  7  8  9
3  set2  1  2  3
4  set2  4  5  6
5  set2  7  8  9
6  set3  1  2  3
7  set3  4  5  6
8  set3  7  8  9   

在我的例子中,有多个列要爆炸,并且需要取消嵌套的数组有变量长度。

我最终应用了新的熊猫0.25爆炸功能两次,然后删除生成的副本,它的工作!

df = df.explode('A')
df = df.explode('B')
df = df.drop_duplicates()

一种替代方法是在列的行上应用meshgrid recipe来取消嵌套:

import numpy as np
import pandas as pd


def unnest(frame, explode):
    def mesh(values):
        return np.array(np.meshgrid(*values)).T.reshape(-1, len(values))

    data = np.vstack(mesh(row) for row in frame[explode].values)
    return pd.DataFrame(data=data, columns=explode)


df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
print(unnest(df, ['A', 'B']))  # base
print()

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [3, 4]], 'C': [[1, 2], [3, 4]]})
print(unnest(df, ['A', 'B', 'C']))  # multiple columns
print()

df = pd.DataFrame({'A': [1, 2, 3], 'B': [[1, 2], [1, 2, 3], [1]],
                   'C': [[1, 2, 3], [1, 2], [1, 2]], 'D': ['A', 'B', 'C']})

print(unnest(df, ['A', 'B']))  # uneven length lists
print()
print(unnest(df, ['D', 'B']))  # different types
print()

输出

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

   A  B  C
0  1  1  1
1  1  2  1
2  1  1  2
3  1  2  2
4  2  3  3
5  2  4  3
6  2  3  4
7  2  4  4

   A  B
0  1  1
1  1  2
2  2  1
3  2  2
4  2  3
5  3  1

   D  B
0  A  1
1  A  2
2  B  1
3  B  2
4  B  3
5  C  1