我有以下数据帧,其中一列是一个对象(列表类型单元格):

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})

输出:

   A       B
0  1  [1, 2]
1  2  [1, 2]

我的期望输出是:

   A  B
0  1  1
1  1  2
3  2  1
4  2  2

我该怎么做才能做到这一点呢?


相关的问题

Pandas列的列表,为每个列表元素创建一行

很好的问题和答案,但只处理一个列与列表(在我的回答自定义函数将工作于多个列,也接受的答案是使用最耗时的应用,这是不建议的,检查更多信息当我(不)想要使用熊猫应用()在我的代码?)


当前回答

一种替代方法是在列的行上应用meshgrid recipe来取消嵌套:

import numpy as np
import pandas as pd


def unnest(frame, explode):
    def mesh(values):
        return np.array(np.meshgrid(*values)).T.reshape(-1, len(values))

    data = np.vstack(mesh(row) for row in frame[explode].values)
    return pd.DataFrame(data=data, columns=explode)


df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
print(unnest(df, ['A', 'B']))  # base
print()

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [3, 4]], 'C': [[1, 2], [3, 4]]})
print(unnest(df, ['A', 'B', 'C']))  # multiple columns
print()

df = pd.DataFrame({'A': [1, 2, 3], 'B': [[1, 2], [1, 2, 3], [1]],
                   'C': [[1, 2, 3], [1, 2], [1, 2]], 'D': ['A', 'B', 'C']})

print(unnest(df, ['A', 'B']))  # uneven length lists
print()
print(unnest(df, ['D', 'B']))  # different types
print()

输出

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

   A  B  C
0  1  1  1
1  1  2  1
2  1  1  2
3  1  2  2
4  2  3  3
5  2  4  3
6  2  3  4
7  2  4  4

   A  B
0  1  1
1  1  2
2  2  1
3  2  2
4  2  3
5  3  1

   D  B
0  A  1
1  A  2
2  B  1
3  B  2
4  B  3
5  C  1

其他回答

我把这个问题推广了一下,以便适用于更多的专栏。

我的解决方案的总结:

In[74]: df
Out[74]: 
    A   B             C             columnD
0  A1  B1  [C1.1, C1.2]                D1
1  A2  B2  [C2.1, C2.2]  [D2.1, D2.2, D2.3]
2  A3  B3            C3        [D3.1, D3.2]

In[75]: dfListExplode(df,['C','columnD'])
Out[75]: 
    A   B     C columnD
0  A1  B1  C1.1    D1
1  A1  B1  C1.2    D1
2  A2  B2  C2.1    D2.1
3  A2  B2  C2.1    D2.2
4  A2  B2  C2.1    D2.3
5  A2  B2  C2.2    D2.1
6  A2  B2  C2.2    D2.2
7  A2  B2  C2.2    D2.3
8  A3  B3    C3    D3.1
9  A3  B3    C3    D3.2

完整的例子:

实际的爆炸由3行组成。剩下的是化妆品(多列爆炸,处理字符串而不是爆炸列中的列表,……)。

import pandas as pd
import numpy as np

df=pd.DataFrame( {'A': ['A1','A2','A3'],
                  'B': ['B1','B2','B3'],
                  'C': [ ['C1.1','C1.2'],['C2.1','C2.2'],'C3'],
                  'columnD': [ 'D1',['D2.1','D2.2', 'D2.3'],['D3.1','D3.2']],
                  })
print('df',df, sep='\n')

def dfListExplode(df, explodeKeys):
    if not isinstance(explodeKeys, list):
        explodeKeys=[explodeKeys]
    # recursive handling of explodeKeys
    if len(explodeKeys)==0:
        return df
    elif len(explodeKeys)==1:
        explodeKey=explodeKeys[0]
    else:
        return dfListExplode( dfListExplode(df, explodeKeys[:1]), explodeKeys[1:])
    # perform explosion/unnesting for key: explodeKey
    dfPrep=df[explodeKey].apply(lambda x: x if isinstance(x,list) else [x]) #casts all elements to a list
    dfIndExpl=pd.DataFrame([[x] + [z] for x, y in zip(dfPrep.index,dfPrep.values) for z in y ], columns=['explodedIndex',explodeKey])
    dfMerged=dfIndExpl.merge(df.drop(explodeKey, axis=1), left_on='explodedIndex', right_index=True)
    dfReind=dfMerged.reindex(columns=list(df))
    return dfReind

dfExpl=dfListExplode(df,['C','columnD'])
print('dfExpl',dfExpl, sep='\n')

感谢文友本的回答

因为通常子列表的长度是不同的,join/merge的计算成本要高得多。我对不同长度的子列表和更多正常列重新测试了该方法。

MultiIndex也应该是一种更简单的编写方法,并且具有与numpy方法几乎相同的性能。

令人惊讶的是,在我的实现理解方式有最好的表现。

def stack(df):
    return df.set_index(['A', 'C']).B.apply(pd.Series).stack()


def comprehension(df):
    return pd.DataFrame([x + [z] for x, y in zip(df[['A', 'C']].values.tolist(), df.B) for z in y])


def multiindex(df):
    return pd.DataFrame(np.concatenate(df.B.values), index=df.set_index(['A', 'C']).index.repeat(df.B.str.len()))


def array(df):
    return pd.DataFrame(
        np.column_stack((
            np.repeat(df[['A', 'C']].values, df.B.str.len(), axis=0),
            np.concatenate(df.B.values)
        ))
    )


import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from timeit import timeit

res = pd.DataFrame(
    index=[
        'stack',
        'comprehension',
        'multiindex',
        'array',
    ],
    columns=[1000, 2000, 5000, 10000, 20000, 50000],
    dtype=float
)

for f in res.index:
    for c in res.columns:
        df = pd.DataFrame({'A': list('abc'), 'C': list('def'), 'B': [['g', 'h', 'i'], ['j', 'k'], ['l']]})
        df = pd.concat([df] * c)
        stmt = '{}(df)'.format(f)
        setp = 'from __main__ import df, {}'.format(f)
        res.at[f, c] = timeit(stmt, setp, number=20)

ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N")
ax.set_ylabel("time (relative)")

性能

每种方法的相对时间

我有另一个好方法来解决这个问题当你有不止一列要爆炸的时候。

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]], 'C':[[1,2,3],[1,2,3]]})

print(df)
   A       B          C
0  1  [1, 2]  [1, 2, 3]
1  2  [1, 2]  [1, 2, 3]

我想爆炸B和C列,首先爆炸B,第二爆炸C,然后从原来的df中去掉B和C。之后,我将在3个dfs上做一个索引连接。

explode_b = df.explode('B')['B']
explode_c = df.explode('C')['C']
df = df.drop(['B', 'C'], axis=1)
df = df.join([explode_b, explode_c])

在我的例子中,有多个列要爆炸,并且需要取消嵌套的数组有变量长度。

我最终应用了新的熊猫0.25爆炸功能两次,然后删除生成的副本,它的工作!

df = df.explode('A')
df = df.explode('B')
df = df.drop_duplicates()

一种替代方法是在列的行上应用meshgrid recipe来取消嵌套:

import numpy as np
import pandas as pd


def unnest(frame, explode):
    def mesh(values):
        return np.array(np.meshgrid(*values)).T.reshape(-1, len(values))

    data = np.vstack(mesh(row) for row in frame[explode].values)
    return pd.DataFrame(data=data, columns=explode)


df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
print(unnest(df, ['A', 'B']))  # base
print()

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [3, 4]], 'C': [[1, 2], [3, 4]]})
print(unnest(df, ['A', 'B', 'C']))  # multiple columns
print()

df = pd.DataFrame({'A': [1, 2, 3], 'B': [[1, 2], [1, 2, 3], [1]],
                   'C': [[1, 2, 3], [1, 2], [1, 2]], 'D': ['A', 'B', 'C']})

print(unnest(df, ['A', 'B']))  # uneven length lists
print()
print(unnest(df, ['D', 'B']))  # different types
print()

输出

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

   A  B  C
0  1  1  1
1  1  2  1
2  1  1  2
3  1  2  2
4  2  3  3
5  2  4  3
6  2  3  4
7  2  4  4

   A  B
0  1  1
1  1  2
2  2  1
3  2  2
4  2  3
5  3  1

   D  B
0  A  1
1  A  2
2  B  1
3  B  2
4  B  3
5  C  1