我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。

我可以将geom_line的轴向右移动吗?


当前回答

下面的文章帮助我将ggplot2生成的两个图合并到单行上:

一页上的多个图(ggplot2)由Cookbook for R

下面是代码在这种情况下的样子:

p1 <- 
  ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) +  geom_density(alpha=.2)

p2 <- 
  ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)  

multiplot(p1,p2,cols=2)

其他回答

可以对变量使用facet_wrap(~ variable, ncol=)来创建一个新的比较。它们不在同一个轴上,但很相似。

我们当然可以用R函数图来建立一个双y轴的图。

# pseudo dataset
df <- data.frame(x = seq(1, 1000, 1), y1 = sample.int(100, 1000, replace=T), y2 = sample(50, 1000, replace = T))

# plot first plot 
with(df, plot(y1 ~ x, col = "red"))

# set new plot
par(new = T) 

# plot second plot, but without axis
with(df, plot(y2 ~ x, type = "l", xaxt = "n", yaxt = "n", xlab = "", ylab = ""))

# define y-axis and put y-labs
axis(4)
with(df, mtext("y2", side = 4))

我发现这个答案对我帮助最大,但发现有一些边缘情况,它似乎不能正确处理,特别是消极的情况,以及极限距离为0的情况(如果我们从最大/最小数据中获取极限,就会发生这种情况)。测试似乎表明,这是一致的

我使用以下代码。这里我假设我们有[x1,x2]我们想把它变换成[y1,y2]。我处理这个问题的方法是将[x1,x2]转换为[0,1](一个足够简单的转换),然后[0,1]转换为[y1,y2]。

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
)
#Set the limits of each axis manually:

  ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature



  b <- diff(ylim.sec)/diff(ylim.prim)

#If all values are the same this messes up the transformation, so we need to modify it here
if(b==0){
  ylim.sec <- c(ylim.sec[1]-1, ylim.sec[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}
if (is.na(b)){
  ylim.prim <- c(ylim.prim[1]-1, ylim.prim[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}


ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = ylim.prim[1]+(Temp-ylim.sec[1])/b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~((.-ylim.prim[1]) *b  + ylim.sec[1]), name = "Temperature"), limits = ylim.prim) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

这里的关键部分是,我们用~((.-ylim.prim[1]) *b + ylim.sec[1])转换次要y轴,然后对实际值y = ylim.prim[1]+(Temp-ylim.sec[1])/b)应用逆。我们还应该确保limits = ylim.prim。

总有办法的。

这里有一个解决方案,允许完全任意轴而不重新缩放。其思想是生成两个除了轴以外完全相同的图,并使用cowplot包中的insert_yaxis_grob和get_y_axis函数将它们组合在一起。

library(ggplot2)
library(cowplot)

## first plot 
p1 <- ggplot(mtcars,aes(disp,hp,color=as.factor(am))) + 
    geom_point() + theme_bw() + theme(legend.position='top', text=element_text(size=16)) +
    ylab("Horse points" )+ xlab("Display size") + scale_color_discrete(name='Transmitter') +
    stat_smooth(se=F)

## same plot with different, arbitrary scale   
p2 <- p1 +
    scale_y_continuous(position='right',breaks=seq(120,173,length.out = 3),
                       labels=c('little','medium little','medium hefty'))

ggdraw(insert_yaxis_grob(p1,get_y_axis(p2,position='right')))

下面的文章帮助我将ggplot2生成的两个图合并到单行上:

一页上的多个图(ggplot2)由Cookbook for R

下面是代码在这种情况下的样子:

p1 <- 
  ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) +  geom_density(alpha=.2)

p2 <- 
  ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)  

multiplot(p1,p2,cols=2)