我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。
我可以将geom_line的轴向右移动吗?
我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。
我可以将geom_line的轴向右移动吗?
当前回答
对我来说,棘手的部分是计算出两个轴之间的变换函数。我用的是我的curvefit。
> dput(combined_80_8192 %>% filter (time > 270, time < 280))
structure(list(run = c(268L, 268L, 268L, 268L, 268L, 268L, 268L,
268L, 268L, 268L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 263L,
263L, 263L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L,
269L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L,
267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 265L,
265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 266L, 266L,
266L, 266L, 266L, 266L, 266L, 266L, 266L, 266L, 262L, 262L, 262L,
262L, 262L, 262L, 262L, 262L, 262L, 262L, 264L, 264L, 264L, 264L,
264L, 264L, 264L, 264L, 264L, 264L, 260L, 260L, 260L, 260L, 260L,
260L, 260L, 260L, 260L, 260L), repetition = c(8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), module = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "scenario.node[0].nicVLCTail.phyVLC", class = "factor"),
configname = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "Road-Vlc", class = "factor"), packetByteLength = c(8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L
), numVehicles = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
), dDistance = c(80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L), time = c(270.166006903445,
271.173853699836, 272.175873251122, 273.177524313334, 274.182946177105,
275.188959464989, 276.189675339937, 277.198250244799, 278.204619457189,
279.212562800009, 270.164199199177, 271.168527215152, 272.173072994958,
273.179210429715, 274.184351047337, 275.18980754378, 276.194816792995,
277.198598277809, 278.202398083519, 279.210634593917, 270.210674322891,
271.212395107473, 272.218871923292, 273.219060500457, 274.220486359614,
275.22401452372, 276.229646658839, 277.231060448138, 278.240407241942,
279.2437126347, 270.283554249858, 271.293168593832, 272.298574288769,
273.304413221348, 274.306272082517, 275.309023049011, 276.317805897347,
277.324403550028, 278.332855848701, 279.334046374594, 270.118608539613,
271.127947700074, 272.133887145863, 273.135726000491, 274.135994529981,
275.136563912708, 276.140120735361, 277.144298344151, 278.146885137621,
279.147552358659, 270.206015567272, 271.214618077209, 272.216566814903,
273.225435592582, 274.234014573683, 275.242949179958, 276.248417809711,
277.248800670023, 278.249750333404, 279.252926560188, 270.217182684494,
271.218357511397, 272.224698488895, 273.231112784327, 274.238740508457,
275.242715184122, 276.249053562718, 277.250325509798, 278.258488063493,
279.261141590137, 270.282904173953, 271.284689544638, 272.294220723234,
273.299749415592, 274.30628880553, 275.312075103126, 276.31579134717,
277.321905523606, 278.326305136748, 279.333056502253, 270.258991527456,
271.260224091407, 272.270076810133, 273.27052037648, 274.274119348094,
275.280808254502, 276.286353887245, 277.287064312339, 278.294444793276,
279.296772014594, 270.333066283904, 271.33877455992, 272.345842319903,
273.350858180493, 274.353972278505, 275.360454510107, 276.365088896161,
277.369166956941, 278.372571708911, 279.38017503079), distanceToTx = c(80.255266401689,
80.156059067023, 79.98823695539, 79.826647129071, 79.76678667135,
79.788239825292, 79.734539327997, 79.74766421514, 79.801243848241,
79.765920888341, 80.255266401689, 80.15850240049, 79.98823695539,
79.826647129071, 79.76678667135, 79.788239825292, 79.735078924078,
79.74766421514, 79.801243848241, 79.764622734914, 80.251248121732,
80.146436869316, 79.984682320466, 79.82292012342, 79.761908518748,
79.796988776281, 79.736920997657, 79.745038376718, 79.802638836686,
79.770029970452, 80.243475525691, 80.127918207499, 79.978303140866,
79.816259117883, 79.749322030693, 79.809916018889, 79.744456560867,
79.738655068783, 79.788697533211, 79.784288359619, 80.260412958482,
80.168426829066, 79.992034911214, 79.830845773284, 79.7756751763,
79.778156038931, 79.732399593756, 79.752769548846, 79.799967731078,
79.757585110481, 80.251248121732, 80.146436869316, 79.984682320466,
79.822062073459, 79.75884601899, 79.801590491435, 79.738335109094,
79.74347007248, 79.803215965043, 79.771471198955, 80.250257298678,
80.146436869316, 79.983831684476, 79.822062073459, 79.75884601899,
79.801590491435, 79.738335109094, 79.74347007248, 79.803849157574,
79.771471198955, 80.243475525691, 80.130180105198, 79.978303140866,
79.816881283718, 79.749322030693, 79.80984572883, 79.744456560867,
79.738655068783, 79.790548644175, 79.784288359619, 80.246349000313,
80.137056554491, 79.980581246037, 79.818924707937, 79.753176142361,
79.808777040341, 79.741609845588, 79.740770913572, 79.796316397253,
79.777593733292, 80.238796415443, 80.119021911134, 79.974810568944,
79.814065350562, 79.743657315504, 79.810146783217, 79.749945098869,
79.737122584544, 79.781650522348, 79.791554933936), headerNoError = c(0.99999999989702,
0.9999999999981, 0.99999999999946, 0.9999999928026, 0.99999873265475,
0.77080141574964, 0.99007491438593, 0.99994396605059, 0.45588747062284,
0.93484381262491, 0.99999999989702, 0.99999999999816, 0.99999999999946,
0.9999999928026, 0.99999873265475, 0.77080141574964, 0.99008458785106,
0.99994396605059, 0.45588747062284, 0.93480223051707, 0.99999999989735,
0.99999999999789, 0.99999999999946, 0.99999999287551, 0.99999876302649,
0.46903147501117, 0.98835168988253, 0.99994427085086, 0.45235035271542,
0.93496741877335, 0.99999999989803, 0.99999999999781, 0.99999999999948,
0.99999999318224, 0.99994254156311, 0.46891362282273, 0.93382613917348,
0.99994594904099, 0.93002915596843, 0.93569767251247, 0.99999999989658,
0.99999999998074, 0.99999999999946, 0.99999999272802, 0.99999871586781,
0.76935240919896, 0.99002587758346, 0.99999881589732, 0.46179415706093,
0.93417422376389, 0.99999999989735, 0.99999999999789, 0.99999999999946,
0.99999999289347, 0.99999876940486, 0.46930769326427, 0.98837353639905,
0.99994447154714, 0.16313586712094, 0.93500824170148, 0.99999999989744,
0.99999999999789, 0.99999999999946, 0.99999999289347, 0.99999876940486,
0.46930769326427, 0.98837353639905, 0.99994447154714, 0.16330039178981,
0.93500824170148, 0.99999999989803, 0.99999999999781, 0.99999999999948,
0.99999999316541, 0.99994254156311, 0.46794586553266, 0.93382613917348,
0.99994594904099, 0.9303627789484, 0.93569767251247, 0.99999999989778,
0.9999999999978, 0.99999999999948, 0.99999999311433, 0.99999878195152,
0.47101897739483, 0.93368891853679, 0.99994556595217, 0.7571113417265,
0.93553999975802, 0.99999999998191, 0.99999999999784, 0.99999999999971,
0.99999891129658, 0.99994309267792, 0.46510628979591, 0.93442584181035,
0.99894450514543, 0.99890078483692, 0.76933812306423), receivedPower_dbm = c(-93.023492290586,
-92.388378035287, -92.205716340607, -93.816400586752, -95.023489422885,
-100.86308557253, -98.464763536915, -96.175707680373, -102.06189538385,
-99.716653422746, -93.023492290586, -92.384760627397, -92.205716340607,
-93.816400586752, -95.023489422885, -100.86308557253, -98.464201120719,
-96.175707680373, -102.06189538385, -99.717150021506, -93.022927803442,
-92.404017215549, -92.204561341714, -93.814319484729, -95.016990717792,
-102.01669022332, -98.558088145955, -96.173817001483, -102.07406915124,
-99.71517574876, -93.021813165972, -92.409586309743, -92.20229160243,
-93.805335867418, -96.184419849593, -102.01709540787, -99.728735187547,
-96.163233028048, -99.772547164798, -99.706399753853, -93.024204617071,
-92.745813384859, -92.206884754512, -93.818508150122, -95.027018807793,
-100.87000577258, -98.467607232407, -95.005311380324, -102.04157607608,
-99.724619517, -93.022927803442, -92.404017215549, -92.204561341714,
-93.813803344588, -95.015606885523, -102.0157405687, -98.556982278361,
-96.172566862738, -103.21871579865, -99.714687230796, -93.022787428238,
-92.404017215549, -92.204274688493, -93.813803344588, -95.015606885523,
-102.0157405687, -98.556982278361, -96.172566862738, -103.21784988098,
-99.714687230796, -93.021813165972, -92.409950613665, -92.20229160243,
-93.805838770576, -96.184419849593, -102.02042267497, -99.728735187547,
-96.163233028048, -99.768774335378, -99.706399753853, -93.022228914406,
-92.411048503835, -92.203136463155, -93.807357409082, -95.012865008237,
-102.00985717796, -99.730352912911, -96.165675535906, -100.92744056572,
-99.708301333236, -92.735781110993, -92.408137395049, -92.119533319039,
-94.982938427575, -96.181073124017, -102.03018610927, -99.721633629806,
-97.32940323644, -97.347613268692, -100.87007386786), snr = c(49.848348091678,
57.698190927109, 60.17669971462, 41.529809724535, 31.452202106925,
8.1976890851341, 14.240447804094, 24.122884195464, 6.2202875499406,
10.674183333671, 49.848348091678, 57.746270018264, 60.17669971462,
41.529809724535, 31.452202106925, 8.1976890851341, 14.242292077376,
24.122884195464, 6.2202875499406, 10.672962852322, 49.854827699773,
57.49079026127, 60.192705735317, 41.549715223147, 31.499301851462,
6.2853718719014, 13.937702343688, 24.133388256416, 6.2028757927148,
10.677815810561, 49.867624820879, 57.417115267867, 60.224172277442,
41.635752021705, 24.074540962859, 6.2847854917092, 10.644529778044,
24.19227425387, 10.537686730745, 10.699414795917, 49.84017267426,
53.139646558768, 60.160512118809, 41.509660845114, 31.42665220053,
8.1846370024428, 14.231126423354, 31.584125885363, 6.2494585568733,
10.654622041348, 49.854827699773, 57.49079026127, 60.192705735317,
41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322,
24.140336174865, 4.765718874642, 10.679016976694, 49.856439162736,
57.49079026127, 60.196678846453, 41.55465351989, 31.509340361646,
6.2867464196657, 13.941251828322, 24.140336174865, 4.7666691818074,
10.679016976694, 49.867624820879, 57.412299088098, 60.224172277442,
41.630930975211, 24.074540962859, 6.279972363168, 10.644529778044,
24.19227425387, 10.546845071479, 10.699414795917, 49.862851240855,
57.397787176282, 60.212457625018, 41.61637603957, 31.529239767749,
6.2952688513108, 10.640565481982, 24.178672145334, 8.0771089950663,
10.694731030907, 53.262541905639, 57.43627424514, 61.382796189332,
31.747253311549, 24.093100244121, 6.2658701281075, 10.661949889074,
18.495227442305, 18.417839037171, 8.1845086722809), frameId = c(15051,
15106, 15165, 15220, 15279, 15330, 15385, 15452, 15511, 15566,
15019, 15074, 15129, 15184, 15239, 15298, 15353, 15412, 15471,
15526, 14947, 14994, 15057, 15112, 15171, 15226, 15281, 15332,
15391, 15442, 14971, 15030, 15085, 15144, 15203, 15262, 15321,
15380, 15435, 15490, 14915, 14978, 15033, 15092, 15147, 15198,
15257, 15312, 15371, 15430, 14975, 15034, 15089, 15140, 15195,
15254, 15313, 15368, 15427, 15478, 14987, 15046, 15105, 15160,
15215, 15274, 15329, 15384, 15447, 15506, 14943, 15002, 15061,
15116, 15171, 15230, 15285, 15344, 15399, 15454, 14971, 15026,
15081, 15136, 15195, 15258, 15313, 15368, 15423, 15478, 15039,
15094, 15149, 15204, 15263, 15314, 15369, 15428, 15487, 15546
), packetOkSinr = c(0.99999999314881, 0.9999999998736, 0.99999999996428,
0.99999952114066, 0.99991568416005, 3.00628034688444e-08,
0.51497487795954, 0.99627877136019, 0, 0.011303253101957,
0.99999999314881, 0.99999999987726, 0.99999999996428, 0.99999952114066,
0.99991568416005, 3.00628034688444e-08, 0.51530974419663,
0.99627877136019, 0, 0.011269851265775, 0.9999999931708,
0.99999999985986, 0.99999999996428, 0.99999952599145, 0.99991770469509,
0, 0.45861812482641, 0.99629897628155, 0, 0.011403119534097,
0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954639936,
0.99618434878558, 0, 0.010513119213425, 0.99641022914441,
0.00801687746446111, 0.012011103529927, 0.9999999931195,
0.99999999871861, 0.99999999996428, 0.99999951617905, 0.99991456738049,
2.6525298291169e-08, 0.51328066587104, 0.9999212220316, 0,
0.010777054258914, 0.9999999931708, 0.99999999985986, 0.99999999996428,
0.99999952718674, 0.99991812902805, 0, 0.45929307038653,
0.99631228046814, 0, 0.011436292559188, 0.99999999317629,
0.99999999985986, 0.99999999996428, 0.99999952718674, 0.99991812902805,
0, 0.45929307038653, 0.99631228046814, 0, 0.011436292559188,
0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954527918,
0.99618434878558, 0, 0.010513119213425, 0.99641022914441,
0.00821047996950475, 0.012011103529927, 0.99999999319919,
0.99999999985345, 0.99999999996519, 0.99999954188106, 0.99991896371849,
0, 0.010410830482692, 0.996384831822, 9.12484388049251e-09,
0.011877185067536, 0.99999999879646, 0.9999999998562, 0.99999999998077,
0.99992756868677, 0.9962208785486, 0, 0.010971897073662,
0.93214999078663, 0.92943956665979, 2.64925478221656e-08),
snir = c(49.848348091678, 57.698190927109, 60.17669971462,
41.529809724535, 31.452202106925, 8.1976890851341, 14.240447804094,
24.122884195464, 6.2202875499406, 10.674183333671, 49.848348091678,
57.746270018264, 60.17669971462, 41.529809724535, 31.452202106925,
8.1976890851341, 14.242292077376, 24.122884195464, 6.2202875499406,
10.672962852322, 49.854827699773, 57.49079026127, 60.192705735317,
41.549715223147, 31.499301851462, 6.2853718719014, 13.937702343688,
24.133388256416, 6.2028757927148, 10.677815810561, 49.867624820879,
57.417115267867, 60.224172277442, 41.635752021705, 24.074540962859,
6.2847854917092, 10.644529778044, 24.19227425387, 10.537686730745,
10.699414795917, 49.84017267426, 53.139646558768, 60.160512118809,
41.509660845114, 31.42665220053, 8.1846370024428, 14.231126423354,
31.584125885363, 6.2494585568733, 10.654622041348, 49.854827699773,
57.49079026127, 60.192705735317, 41.55465351989, 31.509340361646,
6.2867464196657, 13.941251828322, 24.140336174865, 4.765718874642,
10.679016976694, 49.856439162736, 57.49079026127, 60.196678846453,
41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322,
24.140336174865, 4.7666691818074, 10.679016976694, 49.867624820879,
57.412299088098, 60.224172277442, 41.630930975211, 24.074540962859,
6.279972363168, 10.644529778044, 24.19227425387, 10.546845071479,
10.699414795917, 49.862851240855, 57.397787176282, 60.212457625018,
41.61637603957, 31.529239767749, 6.2952688513108, 10.640565481982,
24.178672145334, 8.0771089950663, 10.694731030907, 53.262541905639,
57.43627424514, 61.382796189332, 31.747253311549, 24.093100244121,
6.2658701281075, 10.661949889074, 18.495227442305, 18.417839037171,
8.1845086722809), ookSnirBer = c(8.8808636558081e-24, 3.2219795637026e-27,
2.6468895519653e-28, 3.9807779074715e-20, 1.0849324265615e-15,
2.5705217057696e-05, 4.7313805615763e-08, 1.8800438086075e-12,
0.00021005320203921, 1.9147343768384e-06, 8.8808636558081e-24,
3.0694773489537e-27, 2.6468895519653e-28, 3.9807779074715e-20,
1.0849324265615e-15, 2.5705217057696e-05, 4.7223753038869e-08,
1.8800438086075e-12, 0.00021005320203921, 1.9171738578051e-06,
8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28,
3.9014083702734e-20, 1.0342658440386e-15, 0.00019591630514278,
6.4692014108683e-08, 1.8600094209271e-12, 0.0002140067535655,
1.9074922485477e-06, 8.7096574467175e-24, 4.2779443633862e-27,
2.5231916788231e-28, 3.5761615214425e-20, 1.9750692814982e-12,
0.0001960392878411, 1.9748966344895e-06, 1.7515881895994e-12,
2.2078334799411e-06, 1.8649940680806e-06, 8.954486301678e-24,
3.2021085732779e-25, 2.690441113724e-28, 4.0627628846548e-20,
1.1134484878561e-15, 2.6061691733331e-05, 4.777159157954e-08,
9.4891388749738e-16, 0.00020359398491544, 1.9542110660398e-06,
8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28,
3.8819641115984e-20, 1.0237769828158e-15, 0.00019562832342849,
6.4455095380046e-08, 1.8468752030971e-12, 0.0010099091367628,
1.9051035165106e-06, 8.8085966897635e-24, 3.9715925056443e-27,
2.594108048185e-28, 3.8819641115984e-20, 1.0237769828158e-15,
0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12,
0.0010088638355194, 1.9051035165106e-06, 8.7096574467175e-24,
4.2987746909572e-27, 2.5231916788231e-28, 3.593647329558e-20,
1.9750692814982e-12, 0.00019705170257492, 1.9748966344895e-06,
1.7515881895994e-12, 2.1868296425817e-06, 1.8649940680806e-06,
8.7517439682173e-24, 4.3621551072316e-27, 2.553168170837e-28,
3.6469582463164e-20, 1.0032983660212e-15, 0.00019385229409318,
1.9830820164805e-06, 1.7760568361323e-12, 2.919419915209e-05,
1.8741284335866e-06, 2.8285944348148e-25, 4.1960751547207e-27,
7.8468215407139e-29, 8.0407329049747e-16, 1.9380328071065e-12,
0.00020004849911333, 1.9393279417733e-06, 5.9354475879597e-10,
6.4258355913627e-10, 2.6065221215415e-05), ookSnrBer = c(8.8808636558081e-24,
3.2219795637026e-27, 2.6468895519653e-28, 3.9807779074715e-20,
1.0849324265615e-15, 2.5705217057696e-05, 4.7313805615763e-08,
1.8800438086075e-12, 0.00021005320203921, 1.9147343768384e-06,
8.8808636558081e-24, 3.0694773489537e-27, 2.6468895519653e-28,
3.9807779074715e-20, 1.0849324265615e-15, 2.5705217057696e-05,
4.7223753038869e-08, 1.8800438086075e-12, 0.00021005320203921,
1.9171738578051e-06, 8.8229427230445e-24, 3.9715925056443e-27,
2.6045198111088e-28, 3.9014083702734e-20, 1.0342658440386e-15,
0.00019591630514278, 6.4692014108683e-08, 1.8600094209271e-12,
0.0002140067535655, 1.9074922485477e-06, 8.7096574467175e-24,
4.2779443633862e-27, 2.5231916788231e-28, 3.5761615214425e-20,
1.9750692814982e-12, 0.0001960392878411, 1.9748966344895e-06,
1.7515881895994e-12, 2.2078334799411e-06, 1.8649940680806e-06,
8.954486301678e-24, 3.2021085732779e-25, 2.690441113724e-28,
4.0627628846548e-20, 1.1134484878561e-15, 2.6061691733331e-05,
4.777159157954e-08, 9.4891388749738e-16, 0.00020359398491544,
1.9542110660398e-06, 8.8229427230445e-24, 3.9715925056443e-27,
2.6045198111088e-28, 3.8819641115984e-20, 1.0237769828158e-15,
0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12,
0.0010099091367628, 1.9051035165106e-06, 8.8085966897635e-24,
3.9715925056443e-27, 2.594108048185e-28, 3.8819641115984e-20,
1.0237769828158e-15, 0.00019562832342849, 6.4455095380046e-08,
1.8468752030971e-12, 0.0010088638355194, 1.9051035165106e-06,
8.7096574467175e-24, 4.2987746909572e-27, 2.5231916788231e-28,
3.593647329558e-20, 1.9750692814982e-12, 0.00019705170257492,
1.9748966344895e-06, 1.7515881895994e-12, 2.1868296425817e-06,
1.8649940680806e-06, 8.7517439682173e-24, 4.3621551072316e-27,
2.553168170837e-28, 3.6469582463164e-20, 1.0032983660212e-15,
0.00019385229409318, 1.9830820164805e-06, 1.7760568361323e-12,
2.919419915209e-05, 1.8741284335866e-06, 2.8285944348148e-25,
4.1960751547207e-27, 7.8468215407139e-29, 8.0407329049747e-16,
1.9380328071065e-12, 0.00020004849911333, 1.9393279417733e-06,
5.9354475879597e-10, 6.4258355913627e-10, 2.6065221215415e-05
)), class = "data.frame", row.names = c(NA, -100L), .Names = c("run",
"repetition", "module", "configname", "packetByteLength", "numVehicles",
"dDistance", "time", "distanceToTx", "headerNoError", "receivedPower_dbm",
"snr", "frameId", "packetOkSinr", "snir", "ookSnirBer", "ookSnrBer"
))
求变换函数
Y1 -> y2 该函数用于将次要y轴的数据按照第一个y轴进行“归一化”
变换函数:f(y1) = 0.025*x + 2.75
Y2 -> y1 该函数用于将第一个y轴的断点转换为第二个y轴的值。注意,现在坐标轴互换了。
变换函数:f(y1) = 40*x - 110
策划
注意如何在ggplot调用中使用转换函数来“动态地”转换数据
ggplot(data=combined_80_8192 %>% filter (time > 270, time < 280), aes(x=time) ) +
stat_summary(aes(y=receivedPower_dbm ), fun.y=mean, geom="line", colour="black") +
stat_summary(aes(y=packetOkSinr*40 - 110 ), fun.y=mean, geom="line", colour="black", position = position_dodge(width=10)) +
scale_x_continuous() +
scale_y_continuous(breaks = seq(-0,-110,-10), "y_first", sec.axis=sec_axis(~.*0.025+2.75, name="y_second") )
第一个stat_summary调用是为第一个y轴设置基数的调用。 第二个stat_summary调用用于转换数据。请记住,所有数据将以第一个y轴为基础。第一个y轴的数据需要标准化。为此,我使用数据上的转换函数:y=packetOkSinr*40 - 110
现在要转换第二个轴,我在scale_y_continuous调用中使用相反的函数:sec.axis=sec_axis(~.*0.025+2.75, name="y_second")。
其他回答
我发现这个答案对我帮助最大,但发现有一些边缘情况,它似乎不能正确处理,特别是消极的情况,以及极限距离为0的情况(如果我们从最大/最小数据中获取极限,就会发生这种情况)。测试似乎表明,这是一致的
我使用以下代码。这里我假设我们有[x1,x2]我们想把它变换成[y1,y2]。我处理这个问题的方法是将[x1,x2]转换为[0,1](一个足够简单的转换),然后[0,1]转换为[y1,y2]。
climate <- tibble(
Month = 1:12,
Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
)
#Set the limits of each axis manually:
ylim.prim <- c(0, 180) # in this example, precipitation
ylim.sec <- c(-4, 18) # in this example, temperature
b <- diff(ylim.sec)/diff(ylim.prim)
#If all values are the same this messes up the transformation, so we need to modify it here
if(b==0){
ylim.sec <- c(ylim.sec[1]-1, ylim.sec[2]+1)
b <- diff(ylim.sec)/diff(ylim.prim)
}
if (is.na(b)){
ylim.prim <- c(ylim.prim[1]-1, ylim.prim[2]+1)
b <- diff(ylim.sec)/diff(ylim.prim)
}
ggplot(climate, aes(Month, Precip)) +
geom_col() +
geom_line(aes(y = ylim.prim[1]+(Temp-ylim.sec[1])/b), color = "red") +
scale_y_continuous("Precipitation", sec.axis = sec_axis(~((.-ylim.prim[1]) *b + ylim.sec[1]), name = "Temperature"), limits = ylim.prim) +
scale_x_continuous("Month", breaks = 1:12) +
ggtitle("Climatogram for Oslo (1961-1990)")
这里的关键部分是,我们用~((.-ylim.prim[1]) *b + ylim.sec[1])转换次要y轴,然后对实际值y = ylim.prim[1]+(Temp-ylim.sec[1])/b)应用逆。我们还应该确保limits = ylim.prim。
下面的文章帮助我将ggplot2生成的两个图合并到单行上:
一页上的多个图(ggplot2)由Cookbook for R
下面是代码在这种情况下的样子:
p1 <-
ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) + geom_density(alpha=.2)
p2 <-
ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)
multiplot(p1,p2,cols=2)
以下内容结合了Dag Hjermann的基本数据和编程,改进了user4786271创建“转换函数”的策略,以优化组合图和数据轴,并响应了浸信会的提示,这样的函数可以在R中创建。
#Climatogram for Oslo (1961-1990)
climate <- tibble(
Month = 1:12,
Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
Precip = c(49,36,47,41,53,65,81,89,90,84,73,55))
#y1 identifies the position, relative to the y1 axis,
#the locations of the minimum and maximum of the y2 graph.
#Usually this will be the min and max of y1.
#y1<-(c(max(climate$Precip), 0))
#y1<-(c(150, 55))
y1<-(c(max(climate$Precip), min(climate$Precip)))
#y2 is the Minimum and maximum of the secondary axis data.
y2<-(c(max(climate$Temp), min(climate$Temp)))
#axis combines y1 and y2 into a dataframe used for regressions.
axis<-cbind(y1,y2)
axis<-data.frame(axis)
#Regression of Temperature to Precipitation:
T2P<-lm(formula = y1 ~ y2, data = axis)
T2P_summary <- summary(lm(formula = y1 ~ y2, data = axis))
T2P_summary
#Identifies the intercept and slope of regressing Temperature to Precipitation:
T2PInt<-T2P_summary$coefficients[1, 1]
T2PSlope<-T2P_summary$coefficients[2, 1]
#Regression of Precipitation to Temperature:
P2T<-lm(formula = y2 ~ y1, data = axis)
P2T_summary <- summary(lm(formula = y2 ~ y1, data = axis))
P2T_summary
#Identifies the intercept and slope of regressing Precipitation to Temperature:
P2TInt<-P2T_summary$coefficients[1, 1]
P2TSlope<-P2T_summary$coefficients[2, 1]
#Create Plot:
ggplot(climate, aes(Month, Precip)) +
geom_col() +
geom_line(aes(y = T2PSlope*Temp + T2PInt), color = "red") +
scale_y_continuous("Precipitation", sec.axis = sec_axis(~.*P2TSlope + P2TInt, name = "Temperature")) +
scale_x_continuous("Month", breaks = 1:12) +
theme(axis.line.y.right = element_line(color = "red"),
axis.ticks.y.right = element_line(color = "red"),
axis.text.y.right = element_text(color = "red"),
axis.title.y.right = element_text(color = "red")) +
ggtitle("Climatogram for Oslo (1961-1990)")
Most noteworthy is that a new "transformation function" works better with just two data points from the data set of each axes—usually the maximum and minimum values of each set. The resulting slopes and intercepts of the two regressions enable ggplot2 to exactly pair the plots of the minimums and maximums of each axis. As user4786271 pointed out, the two regressions transform each data set and plot to the other. One transforms the break points of the first y axis to the values of the second y axis. The second transforms the data of the secondary y axis to be "normalized" according to the first y axis. The following output shows how the axis align the minimums and maximums of each dataset:
使最大值和最小值匹配可能是最合适的;但是,这种方法的另一个好处是,如果需要,可以通过更改与主轴数据相关的编程行轻松地移动与次要轴相关的绘图。下面的输出只是将y1编程行中输入的最小降水量更改为“0”,从而将最小温度水平与“0”降水水平对齐。
从:y1<-(c(max(气候$ precp), min(气候$ precp)))
到:y1<-(c(max(气候$ precp), 0))
请注意,生成的新回归和ggplot2如何自动调整绘图和轴,以正确地将最低温度与“0”降水水平的新“基数”对齐。同样,可以很容易地提升Temperature图,使其更加明显。下面的图是通过简单地将上面提到的线更改为:
“日元<——(c(150年,55岁))”
上面的线表示温度曲线的最大值与“150”降水水平相吻合,温度曲线的最小值与“55”降水水平相吻合。再次注意,ggplot2和由此产生的新的回归输出如何使图保持与轴的正确对齐。
以上可能不是理想的输出;然而,这是一个例子,说明了如何容易地操纵图形,并且在图和轴之间仍然有正确的关系。 Dag Hjermann的主题的结合提高了与情节对应的轴的识别。
您可以创建一个缩放因子,应用于第二个geom和右y轴。这是从塞巴斯蒂安的解推导出来的。
library(ggplot2)
scaleFactor <- max(mtcars$cyl) / max(mtcars$hp)
ggplot(mtcars, aes(x=disp)) +
geom_smooth(aes(y=cyl), method="loess", col="blue") +
geom_smooth(aes(y=hp * scaleFactor), method="loess", col="red") +
scale_y_continuous(name="cyl", sec.axis=sec_axis(~./scaleFactor, name="hp")) +
theme(
axis.title.y.left=element_text(color="blue"),
axis.text.y.left=element_text(color="blue"),
axis.title.y.right=element_text(color="red"),
axis.text.y.right=element_text(color="red")
)
注意:使用ggplot2 v3.0.0
总有办法的。
这里有一个解决方案,允许完全任意轴而不重新缩放。其思想是生成两个除了轴以外完全相同的图,并使用cowplot包中的insert_yaxis_grob和get_y_axis函数将它们组合在一起。
library(ggplot2)
library(cowplot)
## first plot
p1 <- ggplot(mtcars,aes(disp,hp,color=as.factor(am))) +
geom_point() + theme_bw() + theme(legend.position='top', text=element_text(size=16)) +
ylab("Horse points" )+ xlab("Display size") + scale_color_discrete(name='Transmitter') +
stat_smooth(se=F)
## same plot with different, arbitrary scale
p2 <- p1 +
scale_y_continuous(position='right',breaks=seq(120,173,length.out = 3),
labels=c('little','medium little','medium hefty'))
ggdraw(insert_yaxis_grob(p1,get_y_axis(p2,position='right')))