我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

使用map的一行代码,但是如果你想指定额外的参数,你可以这样做:

import pandas as pd
import glob
import functools

df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
                    glob.glob("data/*.csv")))

注意:map本身不允许您提供额外的参数。

其他回答

这是如何使用协作实验室谷歌驱动器:

import pandas as pd
import glob

path = r'/content/drive/My Drive/data/actual/comments_only' # Use your path
all_files = glob.glob(path + "/*.csv")

li = []

for filename in all_files:
    df = pd.read_csv(filename, index_col=None, header=0)
    li.append(df)

frame = pd.concat(li, axis=0, ignore_index=True,sort=True)
frame.to_csv('/content/drive/onefile.csv')

你也可以这样做:

import pandas as pd
import os

new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
    for file in f:
        complete_file_path = csv_folder_path+file
        read_file = pd.read_csv(complete_file_path)
        new_df = new_df.append(read_file, ignore_index=True)


new_df.shape

另一个带有列表理解的一行程序,允许使用read_csv参数。

df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])
import os

os.system("awk '(NR == 1) || (FNR > 1)' file*.csv > merged.csv")

其中NR和FNR表示正在处理的行号。

FNR是每个文件中的当前行。

NR == 1包含第一个文件的第一行(头文件),而FNR > 1跳过每个后续文件的第一行。

Dask库可以从多个文件中读取数据帧:

>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')

(来源:https://examples.dask.org/dataframes/01-data-access.html # Read-CSV-files)

Dask数据框架实现了Pandas数据框架API的一个子集。如果所有的数据都适合内存,你可以调用df.compute()将数据帧转换为Pandas数据帧。