我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

from typing import Iterable

def pnpoly(verts, x, y):
    #check if x and/or y is iterable
    xit, yit = isinstance(x, Iterable), isinstance(y, Iterable)
    #if not iterable, make an iterable of length 1
    X = x if xit else (x, )
    Y = y if yit else (y, )
    #store verts length as a range to juggle j
    r = range(len(verts))
    #final results if x or y is iterable
    results = []
    #traverse x and y coordinates
    for xp in X:
        for yp in Y:
            c = 0 #reset c at every new position
            for i in r:
                j = r[i-1] #set j to position before i
                #store a few arguments to shorten the if statement
                yneq       = (verts[i][1] > yp) != (verts[j][1] > yp)
                xofs, yofs = (verts[j][0] - verts[i][0]), (verts[j][1] - verts[i][1])
                #if we have crossed a line, increment c
                if (yneq and (xp < xofs * (yp - verts[i][1]) / yofs + verts[i][0])):
                    c += 1
            #if c is odd store the coordinates        
            if c%2:
                results.append((xp, yp))
    #return either coordinates or a bool, depending if x or y was an iterable
    return results if (xit or yit) else bool(c%2)

这个python版本是通用的。您可以为True/False结果输入单个x和单个y值,也可以使用x和y的范围来遍历整个点网格。如果使用范围,则返回所有True点的x/y对列表。vertices参数需要一个由x/y对组成的二维Iterable,例如:[(x1,y1), (x2,y2),…]

使用示例:

vertices = [(25,25), (75,25), (75,75), (25,75)]
pnpoly(vertices, 50, 50) #True
pnpoly(vertices, range(100), range(100)) #[(25,25), (25,26), (25,27), ...]

实际上,这些都可以。

pnpoly(vertices, 50, range(100)) #check 0 to 99 y at x of 50
pnpoly(vertices, range(100), 50) #check 0 to 99 x at y of 50

其他回答

您可以通过检查将所需点连接到多边形顶点所形成的面积是否与多边形本身的面积相匹配来实现这一点。

或者你可以检查从你的点到每一对连续的多边形顶点到你的检查点的内角之和是否为360,但我有一种感觉,第一种选择更快,因为它不涉及除法,也不计算三角函数的反函数。

我不知道如果你的多边形内部有一个洞会发生什么,但在我看来,主要思想可以适应这种情况

你也可以把问题贴在数学社区里。我打赌他们有一百万种方法

当使用qt (qt 4.3+)时,可以使用QPolygon的函数containsPoint

在大多数情况下,这是一个比其他算法都快的算法。

它又新又雅致。我们花费O(n * log(n))时间构建一个表,允许我们在O(log(n) + k)时间内测试多边形中的点。

与光线跟踪或角度不同,使用扫描光束表可以更快地对同一多边形进行多次检查。我们必须预先构建一个扫描束活动边表,这是大多数代码正在做的事情。

We calculate the scanbeam and the active edges for that position in the y-direction. We make a list of points sorted by their y-component and we iterate through this list, for two events. Start-Y and End-Y, we track the active edges as we process the list. We process the events in order and for each scanbeam we record the y-value of the event and the active edges at each event (events being start-y and end-y) but we only record these when our event-y is different than last time (so everything at the event point is processed before we mark it in our table).

我们得到我们的表格:

[] p6p5、p6p7 p6p5, p6p7, p2p3, p2p1 p6p7, p5p4, p2p3, p3p1 p7p8, p5p4, p2p3, p2p1 p7p8, p5p4, p3p4, p2p1 p7p8 p2p1、 p7p8、p1p0 p8p0、p1p0 []

在构建该表之后,实际执行工作的代码只有几行。

注意:这里的代码使用复数值作为点。所以。real是。x。imag是。y。

def point_in_scantable(actives_table, events, xi, point):
    beam = bisect(events, point.imag) - 1  # Binary search in sorted array.
    actives_at_y = actives_table[beam]
    total = sum([point.real > xi(e, point.imag) for e in actives_at_y])
    return bool(total % 2)

我们对事件进行二进制搜索,以找到特定值的actives_at_y。对于在y点的所有活动,我们计算在我们点的特定y点的x段值。每次x截距大于点的x分量时加1。然后对总数乘以2。(这是偶数-奇数填充规则,你可以很容易地适应任何其他填充规则)。

完整的代码:


from bisect import bisect

def build_edge_list(polygon):
    edge_list = []
    for i in range(1, len(polygon)):
        if (polygon[i].imag, polygon[i].real) < (polygon[i - 1].imag, polygon[i - 1].real):
            edge_list.append((polygon[i], i))
            edge_list.append((polygon[i - 1], ~i))
        else:
            edge_list.append((polygon[i], ~i))
            edge_list.append((polygon[i - 1], i))

    def sort_key(e):
        return e[0].imag, e[0].real, ~e[1]

    edge_list.sort(key=sort_key)
    return edge_list


def build_scanbeam(edge_list):
    actives_table = []
    events = []
    y = -float("inf")
    actives = []
    for pt, index in edge_list:
        if y != pt.imag:
            actives_table.append(list(actives))
            events.append(y)
        if index >= 0:
            actives.append(index)
        else:
            actives.remove(~index)
        y = pt.imag
    return actives_table, events

def point_in_polygon(polygon, point):
    def x_intercept(e, y):
        pt0 = polygon[e-1]
        pt1 = polygon[e]
        if pt1.real - pt0.real == 0:
            return pt0.real
        m = (pt1.imag - pt0.imag) / (pt1.real - pt0.real)
        b = pt0.imag - (m * pt0.real)
        return (y - b) / m

    edge_list = build_edge_list(polygon)
    actives_table, events = build_scanbeam(edge_list)
    try:
        if len(point):
            return [point_in_scantable(actives_table, events, x_intercept, p) for p in point]
    except TypeError:
        return point_in_scantable(actives_table, events, x_intercept, point)

def point_in_scantable(actives_table, events, xi, point):
    beam = bisect(events, point.imag) - 1  # Binary search in sorted array.
    actives_at_y = actives_table[beam]
    total = sum([point.real > xi(e, point.imag) for e in actives_at_y])
    return bool(total % 2)

如果忽略,则扫描表的构建时间为O(n*log(n))。我们实际上是在O(log(n) + k)时间内查到的。其中n是多边形中段数的大小,k是该多边形中典型的活动边数。其他的光线追踪方法实际上需要O(n)时间。每次我们检查一个点,它迭代整个多边形。所以即使有这个明显的次优实现,它也轻而易举地打败了其他所有的。


There's a few performance tricks that could be done, for example, we can lower the time complexity to O(log(n) + log(k)) time. To do this we would implement Bentley-Ottmann into the sweep line, and rather than processing the intersections as different events, we split the lines at the intersections. We then also sort the active edges by their x-intercepts. We then know that no intersections occur during a scanbeam and since we sorted our segments (taking care to order them correctly within the scanbeam even if they start at the same initial point (you need to look at the slopes, or just compare midpoints of the segments). We then have a sorted intersection-less actives lists scanbeam table which means we can binary search into active edge list as well. Though that sounds like a lot of work for a value of k which is going to be typically 2 or maybe 4.

此外,由于这基本上变成了一个查找表和一些x截距的最小计算,它更能用GPU完成。你不再需要在多边形上循环了。所以你可以用numpy这样的东西来大量计算这些点,这样你就可以一次做所有的计算,从而提高性能。

这似乎在R中工作(为丑陋道歉,希望看到更好的版本!)。

pnpoly <- function(nvert,vertx,verty,testx,testy){
          c <- FALSE
          j <- nvert 
          for (i in 1:nvert){
              if( ((verty[i]>testy) != (verty[j]>testy)) && 
   (testx < (vertx[j]-vertx[i])*(testy-verty[i])/(verty[j]-verty[i])+vertx[i]))
            {c <- !c}
             j <- i}
   return(c)}

bobobobo引用的Eric Haines的文章真的很棒。特别有趣的是比较算法性能的表格;角度求和法和其他方法比起来真的很差。同样有趣的是,使用查找网格将多边形进一步细分为“in”和“out”扇区的优化可以使测试非常快,即使是在> 1000条边的多边形上。

不管怎样,现在还为时过早,但我的投票倾向于“交叉”方法,我认为这几乎就是Mecki所描述的。然而,我发现大卫·伯克(David Bourke)对它进行了最简洁的描述和编纂。我喜欢它不需要真正的三角函数,它适用于凸和凹,而且随着边数的增加,它的表现也相当不错。

顺便说一下,这是Eric Haines文章中的一个性能表,在随机多边形上进行测试。

                       number of edges per polygon
                         3       4      10      100    1000
MacMartin               2.9     3.2     5.9     50.6    485
Crossings               3.1     3.4     6.8     60.0    624
Triangle Fan+edge sort  1.1     1.8     6.5     77.6    787
Triangle Fan            1.2     2.1     7.3     85.4    865
Barycentric             2.1     3.8    13.8    160.7   1665
Angle Summation        56.2    70.4   153.6   1403.8  14693

Grid (100x100)          1.5     1.5     1.6      2.1      9.8
Grid (20x20)            1.7     1.7     1.9      5.7     42.2
Bins (100)              1.8     1.9     2.7     15.1    117
Bins (20)               2.1     2.2     3.7     26.3    278