当使用Tensorflow与Python绑定时,如何将一个张量转换为numpy数组?
当前回答
我已经面对并解决了张量->ndarray转换在张量表示(对抗)图像的特定情况下,通过cleverhans库/教程获得。
我认为我的问题/答案(在这里)也可能是一个有用的例子,对其他情况。
我是TensorFlow的新手,我的结论是经验的:
看起来为了成功,tensor.eval()方法可能还需要输入占位符的值。 Tensor可以像一个函数一样工作,需要它的输入值(提供给feed_dict)来返回一个输出值,例如:
array_out = tensor.eval(session=sess, feed_dict={x: x_input})
请注意,在我的例子中,占位符的名称是x,但我认为您应该为输入占位符找出正确的名称。 X_input是一个包含输入数据的标量值或数组。
在我的案例中,提供sess也是强制性的。
我的示例还包括matplotlib图像可视化部分,但这是OT。
其他回答
要将张量转换回numpy数组,只需在转换后的张量上运行.eval()。
也许你可以试试这个方法:
import tensorflow as tf
W1 = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
array = W1.eval(sess)
print (array)
一个简单的例子是,
import tensorflow as tf
import numpy as np
a=tf.random_normal([2,3],0.0,1.0,dtype=tf.float32) #sampling from a std normal
print(type(a))
#<class 'tensorflow.python.framework.ops.Tensor'>
tf.InteractiveSession() # run an interactive session in Tf.
n 现在如果我们想把这个张量a转换成一个numpy数组
a_np=a.eval()
print(type(a_np))
#<class 'numpy.ndarray'>
就这么简单!
你可以用以下方法将tensorflow中的张量转换为numpy数组。
第一: 使用np.array (your_tensor)
第二: 使用your_tensor.numpy
您可以使用keras后端函数。
import tensorflow as tf
from tensorflow.python.keras import backend
sess = backend.get_session()
array = sess.run(< Tensor >)
print(type(array))
<class 'numpy.ndarray'>
我希望这能有所帮助!
推荐文章
- 如何构建和使用谷歌TensorFlow c++ api
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 每n秒运行特定代码
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID