当使用Tensorflow与Python绑定时,如何将一个张量转换为numpy数组?


当前回答

要将张量转换回numpy数组,只需在转换后的张量上运行.eval()。

其他回答

要将张量转换回numpy数组,只需在转换后的张量上运行.eval()。

TensorFlow 1.倍

文件夹特遣部队。1、只需使用以下命令:

a = tf.constant([[1, 2], [3, 4]])                 
b = tf.add(a, 1)
out = tf.multiply(a, b)
out.eval(session=tf.Session())

输出将是:

# array([[ 2,  6],
#       [12, 20]], dtype=int32)

任何由Session.run或eval返回的张量都是NumPy数组。

>>> print(type(tf.Session().run(tf.constant([1,2,3]))))
<class 'numpy.ndarray'>

Or:

>>> sess = tf.InteractiveSession()
>>> print(type(tf.constant([1,2,3]).eval()))
<class 'numpy.ndarray'>

或者,相当于:

>>> sess = tf.Session()
>>> with sess.as_default():
>>>    print(type(tf.constant([1,2,3]).eval()))
<class 'numpy.ndarray'>

EDIT: Session.run或eval()返回的张量不是NumPy数组。例如,稀疏张量返回为SparseTensorValue:

>>> print(type(tf.Session().run(tf.SparseTensor([[0, 0]],[1],[1,2]))))
<class 'tensorflow.python.framework.sparse_tensor.SparseTensorValue'>

我成功地把TensorGPU变成了np。数组使用以下 :

np.array(tensor_gpu.as_cpu())

(直接使用TensorGPU只会导致包含TensorGPU的单元素数组)。

为了这个命令,我找了好几天。

这对我来说在任何会议之外或类似的事情都很有效。

# you get an array = your tensor.eval(session=tf.compat.v1.Session())
an_array = a_tensor.eval(session=tf.compat.v1.Session())

https://kite.com/python/answers/how-to-convert-a-tensorflow-tensor-to-a-numpy-array-in-python