当使用Tensorflow与Python绑定时,如何将一个张量转换为numpy数组?
当前回答
如果你看到有一个方法_numpy(), 例如,对于一个EagerTensor,简单地调用上面的方法,你将得到一个ndarray。
其他回答
也许你可以试试这个方法:
import tensorflow as tf
W1 = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
array = W1.eval(sess)
print (array)
关于Tensorflow 2.x
以下通常工作,因为默认情况下立即执行是激活的:
import tensorflow as tf
a = tf.constant([[1, 2], [3, 4]])
b = tf.add(a, 1)
print(a.numpy())
# [[1 2]
# [3 4]]
然而,由于很多人似乎都在发布错误:
AttributeError: 'Tensor' object has no attribute 'numpy'
我认为在图形模式下调用tensor.numpy()是行不通的。这就是为什么你会看到这个错误。这里有一个简单的例子:
import tensorflow as tf
@tf.function
def add():
a = tf.constant([[1, 2], [3, 4]])
b = tf.add(a, 1)
tf.print(a.numpy()) # throws an error!
return a
add()
这里可以找到一个简单的解释:
从根本上讲,不能将图张量转换为numpy数组,因为图不在Python中执行——因此在图执行时没有numpy。[…]
TF文档也值得一看。
关于使用Tensorflow 2.x的Keras模型
这也适用于Keras模型,它被封装在tf中。默认为。如果你真的需要运行tensor.numpy(),你可以在model.compile(*)中设置参数run_eager =True,但这将影响模型的性能。
要将张量转换回numpy数组,只需在转换后的张量上运行.eval()。
任何由Session.run或eval返回的张量都是NumPy数组。
>>> print(type(tf.Session().run(tf.constant([1,2,3]))))
<class 'numpy.ndarray'>
Or:
>>> sess = tf.InteractiveSession()
>>> print(type(tf.constant([1,2,3]).eval()))
<class 'numpy.ndarray'>
或者,相当于:
>>> sess = tf.Session()
>>> with sess.as_default():
>>> print(type(tf.constant([1,2,3]).eval()))
<class 'numpy.ndarray'>
EDIT: Session.run或eval()返回的张量不是NumPy数组。例如,稀疏张量返回为SparseTensorValue:
>>> print(type(tf.Session().run(tf.SparseTensor([[0, 0]],[1],[1,2]))))
<class 'tensorflow.python.framework.sparse_tensor.SparseTensorValue'>
如果你看到有一个方法_numpy(), 例如,对于一个EagerTensor,简单地调用上面的方法,你将得到一个ndarray。
推荐文章
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成
- 提取和保存视频帧
- 使用请求包时出现SSL InsecurePlatform错误
- 如何检索Pandas数据帧中的列数?
- except:和except的区别:
- 错误:“字典更新序列元素#0的长度为1;2是必需的”