Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

AlchemyEncoder是很棒的,但有时会失败的十进制值。这是一个改进的编码器,解决十进制问题-

class AlchemyEncoder(json.JSONEncoder):
# To serialize SQLalchemy objects 
def default(self, obj):
    if isinstance(obj.__class__, DeclarativeMeta):
        model_fields = {}
        for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
            data = obj.__getattribute__(field)
            print data
            try:
                json.dumps(data)  # this will fail on non-encodable values, like other classes
                model_fields[field] = data
            except TypeError:
                model_fields[field] = None
        return model_fields
    if isinstance(obj, Decimal):
        return float(obj)
    return json.JSONEncoder.default(self, obj)

其他回答

step1:
class CNAME:
   ...
   def as_dict(self):
       return {item.name: getattr(self, item.name) for item in self.__table__.columns}

step2:
list = []
for data in session.query(CNAME).all():
    list.append(data.as_dict())

step3:
return jsonify(list)

https://flask-restplus.readthedocs.io/en/stable/marshalling.html

from flask_restplus import fields, Namespace, marshal
api = Namespace("Student data")
db_data = Student_details.query.all()
data_marshal_obj = api.model(" Data", {
    "id": fields.String(),
    "number": fields.Integer(),
    "house_name": fields.String(),
 })
data_in_json_serialize =  marshal(db_data, data_marshal_obj)}
print(type(data_in_json_serialize )) #  <class 'dict'>

定制序列化编组在烧瓶restpluse

def alc2json(row):
    return dict([(col, str(getattr(row,col))) for col in row.__table__.columns.keys()])

我想和她玩会儿代码高尔夫。

供参考:我使用automap_base,因为我们有一个根据业务需求单独设计的模式。我今天才开始使用SQLAlchemy,但是文档指出automap_base是declarative_base的扩展,这似乎是SQLAlchemy ORM中的典型范例,所以我相信这应该可以工作。

根据Tjorriemorrie的解决方案,它并没有跟随外键,而是简单地将列与值匹配,并通过str()-ing列值来处理Python类型。我们的值包括Python datetime。时间和小数。十进位类类型的结果,所以它完成了工作。

希望对路人有所帮助!

虽然这是一篇老文章,也许我没有回答上面的问题,但我想谈谈我的连载,至少它对我有用。

我使用FastAPI,SqlAlchemy和MySQL,但我不使用orm模型;

# from sqlalchemy import create_engine
# from sqlalchemy.orm import sessionmaker
# engine = create_engine(config.SQLALCHEMY_DATABASE_URL, pool_pre_ping=True)
# SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

序列化代码



import decimal
import datetime


def alchemy_encoder(obj):
    """JSON encoder function for SQLAlchemy special classes."""
    if isinstance(obj, datetime.date):
        return obj.strftime("%Y-%m-%d %H:%M:%S")
    elif isinstance(obj, decimal.Decimal):
        return float(obj)

import json
from sqlalchemy import text

# db is SessionLocal() object 

app_sql = 'SELECT * FROM app_info ORDER BY app_id LIMIT :page,:page_size'

# The next two are the parameters passed in
page = 1
page_size = 10

# execute sql and return a <class 'sqlalchemy.engine.result.ResultProxy'> object
app_list = db.execute(text(app_sql), {'page': page, 'page_size': page_size})

# serialize
res = json.loads(json.dumps([dict(r) for r in app_list], default=alchemy_encoder))

如果不行,请忽略我的回答。我在这里提到它

https://codeandlife.com/2014/12/07/sqlalchemy-results-to-json-the-easy-way/

当使用sqlalchemy连接到db I时,这是一个高度可配置的简单解决方案。使用熊猫。

import pandas as pd
import sqlalchemy

#sqlalchemy engine configuration
engine = sqlalchemy.create_engine....

def my_function():
  #read in from sql directly into a pandas dataframe
  #check the pandas documentation for additional config options
  sql_DF = pd.read_sql_table("table_name", con=engine)

  # "orient" is optional here but allows you to specify the json formatting you require
  sql_json = sql_DF.to_json(orient="index")

  return sql_json