我有一个字符串列表,我想执行一个自然的字母排序。
例如,下面的列表是自然排序(我想要的):
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
下面是上面列表的“排序”版本(我使用sorted()得到的):
['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']
我在寻找一个排序函数它的行为和第一个一样。
我有一个字符串列表,我想执行一个自然的字母排序。
例如,下面的列表是自然排序(我想要的):
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
下面是上面列表的“排序”版本(我使用sorted()得到的):
['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']
我在寻找一个排序函数它的行为和第一个一样。
当前回答
现在是一些更优雅的东西(pythonic)
-只要碰一下
有很多实现,虽然有些已经接近,但没有一个能完全捕获现代python所提供的优雅。
使用python测试(3.5.1) 包含了一个额外的列表,以演示当 数字在字符串中间 没有测试,但是,我假设如果您的列表是相当大的,那么事先编译正则表达式会更有效 如果这是一个错误的假设,我相信有人会纠正我
罢工
from re import compile, split
dre = compile(r'(\d+)')
mylist.sort(key=lambda l: [int(s) if s.isdigit() else s.lower() for s in split(dre, l)])
完整代码
#!/usr/bin/python3
# coding=utf-8
"""
Natural-Sort Test
"""
from re import compile, split
dre = compile(r'(\d+)')
mylist = ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13', 'elm']
mylist2 = ['e0lm', 'e1lm', 'E2lm', 'e9lm', 'e10lm', 'E12lm', 'e13lm', 'elm', 'e01lm']
mylist.sort(key=lambda l: [int(s) if s.isdigit() else s.lower() for s in split(dre, l)])
mylist2.sort(key=lambda l: [int(s) if s.isdigit() else s.lower() for s in split(dre, l)])
print(mylist)
# ['elm', 'elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
print(mylist2)
# ['e0lm', 'e1lm', 'e01lm', 'E2lm', 'e9lm', 'e10lm', 'E12lm', 'e13lm', 'elm']
使用时注意
从操作系统。路径导入分割 您需要区分导入
灵感来自
Python文档-如何排序 人类排序:自然排序顺序 人的分类 这篇文章的贡献者/评论员和引用帖子
其他回答
基于这里的答案,我写了一个natural_sorted函数,它的行为类似于内置函数的排序:
# Copyright (C) 2018, Benjamin Drung <bdrung@posteo.de>
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import re
def natural_sorted(iterable, key=None, reverse=False):
"""Return a new naturally sorted list from the items in *iterable*.
The returned list is in natural sort order. The string is ordered
lexicographically (using the Unicode code point number to order individual
characters), except that multi-digit numbers are ordered as a single
character.
Has two optional arguments which must be specified as keyword arguments.
*key* specifies a function of one argument that is used to extract a
comparison key from each list element: ``key=str.lower``. The default value
is ``None`` (compare the elements directly).
*reverse* is a boolean value. If set to ``True``, then the list elements are
sorted as if each comparison were reversed.
The :func:`natural_sorted` function is guaranteed to be stable. A sort is
stable if it guarantees not to change the relative order of elements that
compare equal --- this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).
"""
prog = re.compile(r"(\d+)")
def alphanum_key(element):
"""Split given key in list of strings and digits"""
return [int(c) if c.isdigit() else c for c in prog.split(key(element)
if key else element)]
return sorted(iterable, key=alphanum_key, reverse=reverse)
源代码也可以在我的GitHub片段存储库: https://github.com/bdrung/snippets/blob/master/natural_sorted.py
让我就这一需求提出自己的看法:
from typing import Tuple, Union, Optional, Generator
StrOrInt = Union[str, int]
# On Python 3.6, string concatenation is REALLY fast
# Tested myself, and this fella also tested:
# https://blog.ganssle.io/articles/2019/11/string-concat.html
def griter(s: str) -> Generator[StrOrInt, None, None]:
last_was_digit: Optional[bool] = None
cluster: str = ""
for c in s:
if last_was_digit is None:
last_was_digit = c.isdigit()
cluster += c
continue
if c.isdigit() != last_was_digit:
if last_was_digit:
yield int(cluster)
else:
yield cluster
last_was_digit = c.isdigit()
cluster = ""
cluster += c
if last_was_digit:
yield int(cluster)
else:
yield cluster
return
def grouper(s: str) -> Tuple[StrOrInt, ...]:
return tuple(griter(s))
现在如果我们有这样的列表:
filelist = [
'File3', 'File007', 'File3a', 'File10', 'File11', 'File1', 'File4', 'File5',
'File9', 'File8', 'File8b1', 'File8b2', 'File8b11', 'File6'
]
我们可以简单地使用key= kwarg来进行自然排序:
>>> sorted(filelist, key=grouper)
['File1', 'File3', 'File3a', 'File4', 'File5', 'File6', 'File007', 'File8',
'File8b1', 'File8b2', 'File8b11', 'File9', 'File10', 'File11']
当然,这里的缺点是,就像现在一样,该函数将对大写字母在小写字母之前进行排序。
我将把不区分大小写的grouper的实现留给读者:-)
很可能functools.cmp_to_key()与python的sort的底层实现密切相关。此外,cmp参数是遗留的。现代的方法是将输入项转换为支持所需的丰富比较操作的对象。
在CPython 2下。X,即使没有实现各自的富比较操作符,也可以对不同类型的对象排序。在CPython 3下。X,不同类型的对象必须显式地支持比较。参见Python如何比较字符串和int?链接到官方文件。大多数答案都依赖于这种隐含的顺序。切换到Python 3。X将需要一个新的类型来实现和统一数字和字符串之间的比较。
Python 2.7.12 (default, Sep 29 2016, 13:30:34)
>>> (0,"foo") < ("foo",0)
True
Python 3.5.2 (default, Oct 14 2016, 12:54:53)
>>> (0,"foo") < ("foo",0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: int() < str()
有三种不同的方法。第一种使用嵌套类来利用Python的Iterable比较算法。第二个函数将这个嵌套展开到单个类中。第三种方法放弃了str的子类化,专注于性能。所有都是有时间的;第二辆快了一倍,第三辆快了近六倍。对str进行子类化并不是必需的,而且首先可能是一个坏主意,但它确实带来了某些便利。
排序字符被复制以强制按大小写排序,并交换大小写以强制小写字母优先排序;这就是“自然排序”的典型定义。我无法决定分组的类型;有些人可能更喜欢以下选项,这也会带来显著的性能优势:
d = lambda s: s.lower()+s.swapcase()
在使用的地方,比较运算符被设置为object的运算符,这样它们就不会被functools. total_orders忽略。
import functools
import itertools
@functools.total_ordering
class NaturalStringA(str):
def __repr__(self):
return "{}({})".format\
( type(self).__name__
, super().__repr__()
)
d = lambda c, s: [ c.NaturalStringPart("".join(v))
for k,v in
itertools.groupby(s, c.isdigit)
]
d = classmethod(d)
@functools.total_ordering
class NaturalStringPart(str):
d = lambda s: "".join(c.lower()+c.swapcase() for c in s)
d = staticmethod(d)
def __lt__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
try:
return int(self) < int(other)
except ValueError:
if self.isdigit():
return True
elif other.isdigit():
return False
else:
return self.d(self) < self.d(other)
def __eq__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
try:
return int(self) == int(other)
except ValueError:
if self.isdigit() or other.isdigit():
return False
else:
return self.d(self) == self.d(other)
__le__ = object.__le__
__ne__ = object.__ne__
__gt__ = object.__gt__
__ge__ = object.__ge__
def __lt__(self, other):
return self.d(self) < self.d(other)
def __eq__(self, other):
return self.d(self) == self.d(other)
__le__ = object.__le__
__ne__ = object.__ne__
__gt__ = object.__gt__
__ge__ = object.__ge__
import functools
import itertools
@functools.total_ordering
class NaturalStringB(str):
def __repr__(self):
return "{}({})".format\
( type(self).__name__
, super().__repr__()
)
d = lambda s: "".join(c.lower()+c.swapcase() for c in s)
d = staticmethod(d)
def __lt__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
groups = map(lambda i: itertools.groupby(i, type(self).isdigit), (self, other))
zipped = itertools.zip_longest(*groups)
for s,o in zipped:
if s is None:
return True
if o is None:
return False
s_k, s_v = s[0], "".join(s[1])
o_k, o_v = o[0], "".join(o[1])
if s_k and o_k:
s_v, o_v = int(s_v), int(o_v)
if s_v == o_v:
continue
return s_v < o_v
elif s_k:
return True
elif o_k:
return False
else:
s_v, o_v = self.d(s_v), self.d(o_v)
if s_v == o_v:
continue
return s_v < o_v
return False
def __eq__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
groups = map(lambda i: itertools.groupby(i, type(self).isdigit), (self, other))
zipped = itertools.zip_longest(*groups)
for s,o in zipped:
if s is None or o is None:
return False
s_k, s_v = s[0], "".join(s[1])
o_k, o_v = o[0], "".join(o[1])
if s_k and o_k:
s_v, o_v = int(s_v), int(o_v)
if s_v == o_v:
continue
return False
elif s_k or o_k:
return False
else:
s_v, o_v = self.d(s_v), self.d(o_v)
if s_v == o_v:
continue
return False
return True
__le__ = object.__le__
__ne__ = object.__ne__
__gt__ = object.__gt__
__ge__ = object.__ge__
import functools
import itertools
import enum
class OrderingType(enum.Enum):
PerWordSwapCase = lambda s: s.lower()+s.swapcase()
PerCharacterSwapCase = lambda s: "".join(c.lower()+c.swapcase() for c in s)
class NaturalOrdering:
@classmethod
def by(cls, ordering):
def wrapper(string):
return cls(string, ordering)
return wrapper
def __init__(self, string, ordering=OrderingType.PerCharacterSwapCase):
self.string = string
self.groups = [ (k,int("".join(v)))
if k else
(k,ordering("".join(v)))
for k,v in
itertools.groupby(string, str.isdigit)
]
def __repr__(self):
return "{}({})".format\
( type(self).__name__
, self.string
)
def __lesser(self, other, default):
if not isinstance(self, type(other)):
return NotImplemented
for s,o in itertools.zip_longest(self.groups, other.groups):
if s is None:
return True
if o is None:
return False
s_k, s_v = s
o_k, o_v = o
if s_k and o_k:
if s_v == o_v:
continue
return s_v < o_v
elif s_k:
return True
elif o_k:
return False
else:
if s_v == o_v:
continue
return s_v < o_v
return default
def __lt__(self, other):
return self.__lesser(other, default=False)
def __le__(self, other):
return self.__lesser(other, default=True)
def __eq__(self, other):
if not isinstance(self, type(other)):
return NotImplemented
for s,o in itertools.zip_longest(self.groups, other.groups):
if s is None or o is None:
return False
s_k, s_v = s
o_k, o_v = o
if s_k and o_k:
if s_v == o_v:
continue
return False
elif s_k or o_k:
return False
else:
if s_v == o_v:
continue
return False
return True
# functools.total_ordering doesn't create single-call wrappers if both
# __le__ and __lt__ exist, so do it manually.
def __gt__(self, other):
op_result = self.__le__(other)
if op_result is NotImplemented:
return op_result
return not op_result
def __ge__(self, other):
op_result = self.__lt__(other)
if op_result is NotImplemented:
return op_result
return not op_result
# __ne__ is the only implied ordering relationship, it automatically
# delegates to __eq__
>>> import natsort
>>> import timeit
>>> l1 = ['Apple', 'corn', 'apPlE', 'arbour', 'Corn', 'Banana', 'apple', 'banana']
>>> l2 = list(map(str, range(30)))
>>> l3 = ["{} {}".format(x,y) for x in l1 for y in l2]
>>> print(timeit.timeit('sorted(l3+["0"], key=NaturalStringA)', number=10000, globals=globals()))
362.4729259099986
>>> print(timeit.timeit('sorted(l3+["0"], key=NaturalStringB)', number=10000, globals=globals()))
189.7340817489967
>>> print(timeit.timeit('sorted(l3+["0"], key=NaturalOrdering.by(OrderingType.PerCharacterSwapCase))', number=10000, globals=globals()))
69.34636392899847
>>> print(timeit.timeit('natsort.natsorted(l3+["0"], alg=natsort.ns.GROUPLETTERS | natsort.ns.LOWERCASEFIRST)', number=10000, globals=globals()))
98.2531585780016
自然排序既相当复杂,又定义模糊。不要忘记事先运行unicodedata.normalize(…),并考虑使用str.casefold()而不是str.lower()。可能有一些微妙的编码问题我还没有考虑到。因此,我尝试性地推荐natsort库。我快速浏览了一下github存储库;代码维护非常出色。
All the algorithms I've seen depend on tricks such as duplicating and lowering characters, and swapping case. While this doubles the running time, an alternative would require a total natural ordering on the input character set. I don't think this is part of the unicode specification, and since there are many more unicode digits than [0-9], creating such a sorting would be equally daunting. If you want locale-aware comparisons, prepare your strings with locale.strxfrm per Python's Sorting HOW TO.
我写了一个基于http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-order.html的函数,它增加了传递自己的“键”参数的能力。我需要这样才能执行包含更复杂对象(不仅仅是字符串)的列表的自然排序。
import re
def natural_sort(list, key=lambda s:s):
"""
Sort the list into natural alphanumeric order.
"""
def get_alphanum_key_func(key):
convert = lambda text: int(text) if text.isdigit() else text
return lambda s: [convert(c) for c in re.split('([0-9]+)', key(s))]
sort_key = get_alphanum_key_func(key)
list.sort(key=sort_key)
例如:
my_list = [{'name':'b'}, {'name':'10'}, {'name':'a'}, {'name':'1'}, {'name':'9'}]
natural_sort(my_list, key=lambda x: x['name'])
print my_list
[{'name': '1'}, {'name': '9'}, {'name': '10'}, {'name': 'a'}, {'name': 'b'}]
data = ['elm13', 'elm9', 'elm0', 'elm1', 'Elm11', 'Elm2', 'elm10']
让我们分析一下数据。所有元素的数字容量为2。在常见的字面部分“elm”中有3个字母。
所以,元素的最大长度是5。我们可以增加这个值以确保(例如,增加到8)。
记住这一点,我们有一个简单的解决方案:
data.sort(key=lambda x: '{0:0>8}'.format(x).lower())
没有正则表达式和外部库!
print(data)
>>> ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'elm13']
解释:
for elm in data:
print('{0:0>8}'.format(elm).lower())
>>>
0000elm0
0000elm1
0000elm2
0000elm9
000elm10
000elm11
000elm13