我一直在处理从CSV导入的数据。Pandas将一些列更改为浮点数,所以现在这些列中的数字显示为浮点数!但是,我需要将它们显示为整数或不带逗号。是否有方法将它们转换为整数或不显示逗号?
当前回答
要修改浮点数输出,可以这样做:
df= pd.DataFrame(range(5), columns=['a'])
df.a = df.a.astype(float)
df
Out[33]:
a
0 0.0000000
1 1.0000000
2 2.0000000
3 3.0000000
4 4.0000000
pd.options.display.float_format = '{:,.0f}'.format
df
Out[35]:
a
0 0
1 1
2 2
3 3
4 4
其他回答
将所有浮点列转换为int
>>> df = pd.DataFrame(np.random.rand(5, 4) * 10, columns=list('PQRS'))
>>> print(df)
... P Q R S
... 0 4.395994 0.844292 8.543430 1.933934
... 1 0.311974 9.519054 6.171577 3.859993
... 2 2.056797 0.836150 5.270513 3.224497
... 3 3.919300 8.562298 6.852941 1.415992
... 4 9.958550 9.013425 8.703142 3.588733
>>> float_col = df.select_dtypes(include=['float64']) # This will select float columns only
>>> # list(float_col.columns.values)
>>> for col in float_col.columns.values:
... df[col] = df[col].astype('int64')
>>> print(df)
... P Q R S
... 0 4 0 8 1
... 1 0 9 6 3
... 2 2 0 5 3
... 3 3 8 6 1
... 4 9 9 8 3
考虑以下数据帧:
>>> df = pd.DataFrame(10*np.random.rand(3, 4), columns=list("ABCD"))
>>> print(df)
... A B C D
... 0 8.362940 0.354027 1.916283 6.226750
... 1 1.988232 9.003545 9.277504 8.522808
... 2 1.141432 4.935593 2.700118 7.739108
使用列名列表,使用applymap()更改多个列的类型:
>>> cols = ['A', 'B']
>>> df[cols] = df[cols].applymap(np.int64)
>>> print(df)
... A B C D
... 0 8 0 1.916283 6.226750
... 1 1 9 9.277504 8.522808
... 2 1 4 2.700118 7.739108
或者对于单个列使用apply():
>>> df['C'] = df['C'].apply(np.int64)
>>> print(df)
... A B C D
... 0 8 0 1 6.226750
... 1 1 9 9 8.522808
... 2 1 4 2 7.739108
>>> import pandas as pd
>>> right = pd.DataFrame({'C': [1.002, 2.003], 'D': [1.009, 4.55], 'key': ['K0', 'K1']})
>>> print(right)
C D key
0 1.002 1.009 K0
1 2.003 4.550 K1
>>> right['C'] = right.C.astype(int)
>>> print(right)
C D key
0 1 1.009 K0
1 2 4.550 K1
需要转换为int的列也可以在字典中提到,如下所示
df = df.astype({'col1': 'int', 'col2': 'int', 'col3': 'int'})
在问题的文本中解释了数据来自csv。Só,我认为显示选项,使转换时,数据读取,而不是之后,是相关的主题。
当在数据框架中导入电子表格或csv时,“只有整数列”通常会转换为浮点数,因为excel将所有数值存储为浮点数,以及底层库的工作方式。
当使用read_excel或read_csv读取文件时,有几个选项可以避免导入后转换:
参数dtype允许传递一个包含列名和目标类型的字典,例如dtype = {"my_column": "Int64"} 参数转换器可以用来传递进行转换的函数,例如用0改变NaN。转换= {"my_column": lambda x: int(x) if x else 0} parameter convert_float将“整型浮点数转换为int(即1.0 - > 1)”,但要注意像NaN这样的极端情况。该参数仅在read_excel中有效
要在现有的数据帧中进行转换,其他注释中已经给出了几种替代方法,但由于v1.0.0 pandas有一个有趣的函数:convert_dtypes,即“使用支持pd.NA的dtypes将列转换为最佳的dtypes”。
为例:
In [3]: import numpy as np
In [4]: import pandas as pd
In [5]: df = pd.DataFrame(
...: {
...: "a": pd.Series([1, 2, 3], dtype=np.dtype("int64")),
...: "b": pd.Series([1.0, 2.0, 3.0], dtype=np.dtype("float")),
...: "c": pd.Series([1.0, np.nan, 3.0]),
...: "d": pd.Series([1, np.nan, 3]),
...: }
...: )
In [6]: df
Out[6]:
a b c d
0 1 1.0 1.0 1.0
1 2 2.0 NaN NaN
2 3 3.0 3.0 3.0
In [7]: df.dtypes
Out[7]:
a int64
b float64
c float64
d float64
dtype: object
In [8]: converted = df.convert_dtypes()
In [9]: converted.dtypes
Out[9]:
a Int64
b Int64
c Int64
d Int64
dtype: object
In [10]: converted
Out[10]:
a b c d
0 1 1 1 1
1 2 2 <NA> <NA>
2 3 3 3 3
推荐文章
- 从URL中获取参数
- 在python中插入一个列表到另一个列表的语法是什么?
- Python中的最大浮点数是多少?
- Java整数到字节数组
- 将一个列表分成大约相等长度的N个部分
- Python __str__与__unicode__
- 在python中,del和delattr哪个更好?
- 如何动态加载Python类
- 有没有办法在python中做HTTP PUT
- “foo Is None”和“foo == None”之间有什么区别吗?
- 类没有对象成员
- Django模型“没有显式声明app_label”
- 熊猫能自动从CSV文件中读取日期吗?
- 在python中zip的逆函数是什么?
- 有效的方法应用多个过滤器的熊猫数据框架或系列