我一直在处理从CSV导入的数据。Pandas将一些列更改为浮点数,所以现在这些列中的数字显示为浮点数!但是,我需要将它们显示为整数或不带逗号。是否有方法将它们转换为整数或不显示逗号?
当前回答
使用pandas. datafframe .astype(<type>)函数来操作列的dtypes。
>>> df = pd.DataFrame(np.random.rand(3,4), columns=list("ABCD"))
>>> df
A B C D
0 0.542447 0.949988 0.669239 0.879887
1 0.068542 0.757775 0.891903 0.384542
2 0.021274 0.587504 0.180426 0.574300
>>> df[list("ABCD")] = df[list("ABCD")].astype(int)
>>> df
A B C D
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
编辑:
处理缺失值:
>>> df
A B C D
0 0.475103 0.355453 0.66 0.869336
1 0.260395 0.200287 NaN 0.617024
2 0.517692 0.735613 0.18 0.657106
>>> df[list("ABCD")] = df[list("ABCD")].fillna(0.0).astype(int)
>>> df
A B C D
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
其他回答
>>> import pandas as pd
>>> right = pd.DataFrame({'C': [1.002, 2.003], 'D': [1.009, 4.55], 'key': ['K0', 'K1']})
>>> print(right)
C D key
0 1.002 1.009 K0
1 2.003 4.550 K1
>>> right['C'] = right.C.astype(int)
>>> print(right)
C D key
0 1 1.009 K0
1 2 4.550 K1
这是一个快速的解决方案,如果你想转换更多的列的熊猫。DataFrame从浮点数到整数也考虑到你可以有NaN值的情况。
cols = ['col_1', 'col_2', 'col_3', 'col_4']
for col in cols:
df[col] = df[col].apply(lambda x: int(x) if x == x else "")
我尝试用else x)和else None),但结果仍然有浮点数,所以我使用else ""。
扩展@Ryan G提到的pandas. datafame .astype(<type>)方法的使用,可以使用errors=ignore参数只转换那些不会产生错误的列,这明显简化了语法。显然,在忽略错误时应该谨慎,但对于这个任务,它非常方便。
>>> df = pd.DataFrame(np.random.rand(3, 4), columns=list('ABCD'))
>>> df *= 10
>>> print(df)
... A B C D
... 0 2.16861 8.34139 1.83434 6.91706
... 1 5.85938 9.71712 5.53371 4.26542
... 2 0.50112 4.06725 1.99795 4.75698
>>> df['E'] = list('XYZ')
>>> df.astype(int, errors='ignore')
>>> print(df)
... A B C D E
... 0 2 8 1 6 X
... 1 5 9 5 4 Y
... 2 0 4 1 4 Z
来自pandas. datafframe .astype文档:
错误:{' raise ', ' ignore '},默认' raise ' 控制对所提供的dtype的无效数据引发异常。 Raise:允许抛出异常 Ignore:抑制异常。错误时返回原始对象 0.20.0新版功能。
需要转换为int的列也可以在字典中提到,如下所示
df = df.astype({'col1': 'int', 'col2': 'int', 'col3': 'int'})
将所有浮点列转换为int
>>> df = pd.DataFrame(np.random.rand(5, 4) * 10, columns=list('PQRS'))
>>> print(df)
... P Q R S
... 0 4.395994 0.844292 8.543430 1.933934
... 1 0.311974 9.519054 6.171577 3.859993
... 2 2.056797 0.836150 5.270513 3.224497
... 3 3.919300 8.562298 6.852941 1.415992
... 4 9.958550 9.013425 8.703142 3.588733
>>> float_col = df.select_dtypes(include=['float64']) # This will select float columns only
>>> # list(float_col.columns.values)
>>> for col in float_col.columns.values:
... df[col] = df[col].astype('int64')
>>> print(df)
... P Q R S
... 0 4 0 8 1
... 1 0 9 6 3
... 2 2 0 5 3
... 3 3 8 6 1
... 4 9 9 8 3
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式