我要做一个柱状图,其中最大的柱状图离y轴最近,最短的柱状图离y轴最远。这有点像我的表格

    Name   Position
1   James  Goalkeeper
2   Frank  Goalkeeper
3   Jean   Defense
4   Steve  Defense
5   John   Defense
6   Tim    Striker

所以我试图建立一个条形图,根据位置显示球员的数量

p <- ggplot(theTable, aes(x = Position)) + geom_bar(binwidth = 1)

但是图表显示的是门将栏,然后是防守栏,最后是前锋栏。我希望图表的顺序是,防守条最靠近y轴,守门员条,最后是前锋条。 谢谢


当前回答

由于我们只关注单个变量(“位置”)的分布,而不是两个变量之间的关系,那么直方图可能是更合适的图形。Ggplot有geom_histogram(),这使得它很容易:

ggplot(theTable, aes(x = Position)) + geom_histogram(stat="count")

使用geom_histogram ():

我认为geom_histogram()有点古怪,因为它对待连续数据和离散数据是不同的。

对于连续数据,可以只使用不带参数的geom_histogram()。 例如,如果我们添加一个数字向量“Score”……

    Name   Position   Score  
1   James  Goalkeeper 10
2   Frank  Goalkeeper 20
3   Jean   Defense    10
4   Steve  Defense    10
5   John   Defense    20
6   Tim    Striker    50

然后在“Score”变量上使用geom_histogram()…

ggplot(theTable, aes(x = Score)) + geom_histogram()

对于像“Position”这样的离散数据,我们必须指定一个由美学计算出来的统计数据,使用stat = "count"来给出条形高度的y值:

 ggplot(theTable, aes(x = Position)) + geom_histogram(stat = "count")

注意:奇怪且令人困惑的是,你也可以使用stat = "count"来表示连续的数据,我认为它提供了一个更美观的图形。

ggplot(theTable, aes(x = Score)) + geom_histogram(stat = "count")

编辑:对DebanjanB的有用建议的扩展回答。

其他回答

library(ggplot2)
library(magrittr)

dd <- tibble::tribble(
    ~Name,    ~Position,
  "James", "Goalkeeper",
  "Frank", "Goalkeeper",
   "Jean",    "Defense",
   "John",    "Defense",
  "Steve",    "Defense",
    "Tim",    "Striker"
  )


dd %>% ggplot(aes(x = forcats::fct_infreq(Position))) + geom_bar()

于2022-08-30使用reprex v2.0.2创建

@GavinSimpson:重新排序是一个强大而有效的解决方案:

ggplot(theTable,
       aes(x=reorder(Position,Position,
                     function(x)-length(x)))) +
       geom_bar()

由于我们只关注单个变量(“位置”)的分布,而不是两个变量之间的关系,那么直方图可能是更合适的图形。Ggplot有geom_histogram(),这使得它很容易:

ggplot(theTable, aes(x = Position)) + geom_histogram(stat="count")

使用geom_histogram ():

我认为geom_histogram()有点古怪,因为它对待连续数据和离散数据是不同的。

对于连续数据,可以只使用不带参数的geom_histogram()。 例如,如果我们添加一个数字向量“Score”……

    Name   Position   Score  
1   James  Goalkeeper 10
2   Frank  Goalkeeper 20
3   Jean   Defense    10
4   Steve  Defense    10
5   John   Defense    20
6   Tim    Striker    50

然后在“Score”变量上使用geom_histogram()…

ggplot(theTable, aes(x = Score)) + geom_histogram()

对于像“Position”这样的离散数据,我们必须指定一个由美学计算出来的统计数据,使用stat = "count"来给出条形高度的y值:

 ggplot(theTable, aes(x = Position)) + geom_histogram(stat = "count")

注意:奇怪且令人困惑的是,你也可以使用stat = "count"来表示连续的数据,我认为它提供了一个更美观的图形。

ggplot(theTable, aes(x = Score)) + geom_histogram(stat = "count")

编辑:对DebanjanB的有用建议的扩展回答。

如果不想使用ggplot2,还有一个ggpubr,它为ggbarplot函数提供了一个非常有用的参数。你可以对条形图进行排序。Val在“desc”和“asc”中是这样的:

library(dplyr)
library(ggpubr)
# desc
df %>%
  count(Position) %>%
  ggbarplot(x = "Position", 
            y = "n",
            sort.val = "desc")

# asc
df %>%
  count(Position) %>%
  ggbarplot(x = "Position", 
            y = "n",
            sort.val = "asc")

由reprex包于2022-08-14创建(v2.0.1)

如您所见,对条形进行排序非常简单。如果条形图是分组的,也可以这样做。查看上面的链接,获取一些有用的例子。

我发现ggplot2没有为此提供“自动”解决方案,这非常令人恼火。这就是为什么我在ggcharts中创建了bar_chart()函数。

ggcharts::bar_chart(theTable, Position)

默认情况下,bar_chart()对条形图进行排序并显示水平图。要更改设置水平= FALSE。此外,bar_chart()删除了柱和轴之间难看的“间隙”。