我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?
当前回答
请检查下面可读的代码
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(36, 26))
heatmap = sns.heatmap(df.corr(), vmin=-1, vmax=1, annot=True)
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12)```
[1]: https://i.stack.imgur.com/I5SeR.png
其他回答
除了其他方法,还有对图也很好,它将给出所有情况下的散点图
import pandas as pd
import numpy as np
import seaborn as sns
rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(10, 10))
sns.pairplot(df)
你可以使用来自seaborn的heatmap()来查看b/w不同特征的相关性:
import matplot.pyplot as plt
import seaborn as sns
co_matrics=dataframe.corr()
plot.figure(figsize=(15,20))
sns.heatmap(co_matrix, square=True, cbar_kws={"shrink": .5})
试试这个函数,它也会显示相关矩阵的变量名:
def plot_corr(df,size=10):
"""Function plots a graphical correlation matrix for each pair of columns in the dataframe.
Input:
df: pandas DataFrame
size: vertical and horizontal size of the plot
"""
corr = df.corr()
fig, ax = plt.subplots(figsize=(size, size))
ax.matshow(corr)
plt.xticks(range(len(corr.columns)), corr.columns)
plt.yticks(range(len(corr.columns)), corr.columns)
如果你的dataframe是df,你可以简单地使用:
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(15, 10))
sns.heatmap(df.corr(), annot=True)
当处理大量特征之间的相关性时,我发现将相关特征聚类在一起很有用。这可以用seaborn clustermap图来完成。
import seaborn as sns
import matplotlib.pyplot as plt
g = sns.clustermap(df.corr(),
method = 'complete',
cmap = 'RdBu',
annot = True,
annot_kws = {'size': 8})
plt.setp(g.ax_heatmap.get_xticklabels(), rotation=60);
clustermap函数使用层次聚类将相关特征排列在一起并生成树状树状图。
在这个图中有两个值得注意的集群:
Y_des和dew.point_des Irradiance, y_seasonal和dew.point_seasonal
FWIW的气象数据,以产生这一数字可以访问与这木星笔记本。
推荐文章
- 数据类vs类型。NamedTuple主要用例
- 如何从macOS完全卸载蟒蛇
- 是否有可能键入提示一个lambda函数?
- 'dict'对象没有has_key属性
- 使用Pandas groupby连接来自几行的字符串
- Pandas:给定列的数据帧行之和
- 如何避免在为Python项目构建Docker映像时重新安装包?
- 如何激活蟒蛇环境
- 省略[…]意思是在一个列表里?
- 为什么我得到“'str'对象没有属性'读取'”当尝试使用' json。载入字符串?
- 不区分大小写的列表排序,没有降低结果?
- 排序后的语法(key=lambda:…)
- 在烧瓶中返回HTTP状态代码201
- 使用python创建一个简单的XML文件
- APT命令行界面式的yes/no输入?