我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?


当前回答

当处理大量特征之间的相关性时,我发现将相关特征聚类在一起很有用。这可以用seaborn clustermap图来完成。

import seaborn as sns
import matplotlib.pyplot as plt

g = sns.clustermap(df.corr(), 
                   method = 'complete', 
                   cmap   = 'RdBu', 
                   annot  = True, 
                   annot_kws = {'size': 8})
plt.setp(g.ax_heatmap.get_xticklabels(), rotation=60);

clustermap函数使用层次聚类将相关特征排列在一起并生成树状树状图。

在这个图中有两个值得注意的集群:

Y_des和dew.point_des Irradiance, y_seasonal和dew.point_seasonal


FWIW的气象数据,以产生这一数字可以访问与这木星笔记本。

其他回答

Seaborn的热图版本:

import seaborn as sns
corr = dataframe.corr()
sns.heatmap(corr, 
            xticklabels=corr.columns.values,
            yticklabels=corr.columns.values)

可以使用matplotlib中的imshow()方法

import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('ggplot')

plt.imshow(X.corr(), cmap=plt.cm.Reds, interpolation='nearest')
plt.colorbar()
tick_marks = [i for i in range(len(X.columns))]
plt.xticks(tick_marks, X.columns, rotation='vertical')
plt.yticks(tick_marks, X.columns)
plt.show()

我认为有很多好的答案,但我把这个答案添加给那些需要处理特定列和显示不同情节的人。

import numpy as np
import seaborn as sns
import pandas as pd
from matplotlib import pyplot as plt

rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(18, 18))
df= df.iloc[: , [3,4,5,6,7,8,9,10,11,12,13,14,17]].copy()
corr = df.corr()
plt.figure(figsize=(11,8))
sns.heatmap(corr, cmap="Greens",annot=True)
plt.show()

形成相关矩阵,在我的情况下,zdf是我需要执行相关矩阵的数据框架。

corrMatrix =zdf.corr()
corrMatrix.to_csv('sm_zscaled_correlation_matrix.csv');
html = corrMatrix.style.background_gradient(cmap='RdBu').set_precision(2).render()

# Writing the output to a html file.
with open('test.html', 'w') as f:
   print('<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-widthinitial-scale=1.0"><title>Document</title></head><style>table{word-break: break-all;}</style><body>' + html+'</body></html>', file=f)

然后我们可以截屏。或者将HTML转换为图像文件。

试试这个函数,它也会显示相关矩阵的变量名:

def plot_corr(df,size=10):
    """Function plots a graphical correlation matrix for each pair of columns in the dataframe.

    Input:
        df: pandas DataFrame
        size: vertical and horizontal size of the plot
    """

    corr = df.corr()
    fig, ax = plt.subplots(figsize=(size, size))
    ax.matshow(corr)
    plt.xticks(range(len(corr.columns)), corr.columns)
    plt.yticks(range(len(corr.columns)), corr.columns)