我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?


当前回答

为了完整起见,截至2019年底,我所知道的seaborn最简单的解决方案,如果使用Jupyter:

import seaborn as sns
sns.heatmap(dataframe.corr())

其他回答

令人惊讶的是,没有人提到功能更强、交互性更强、更容易使用的替代品。

A)你可以用plotly:

只要两行,你就得到: 互动, 光滑的规模, 颜色基于整个数据框架,而不是单个列, 轴上的列名和行索引, 放大, 平移, 内置一键保存为PNG格式的功能, 自动伸缩, 比较悬停, 气泡显示数值,热图看起来仍然很好,你可以看到 价值观:

import plotly.express as px
fig = px.imshow(df.corr())
fig.show()

B)你也可以使用Bokeh:

所有相同的功能,只是有点麻烦。但如果你不想选择剧情,仍然想要所有这些东西,这仍然是值得的:

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, LinearColorMapper
from bokeh.transform import transform
output_notebook()
colors = ['#d7191c', '#fdae61', '#ffffbf', '#a6d96a', '#1a9641']
TOOLS = "hover,save,pan,box_zoom,reset,wheel_zoom"
data = df.corr().stack().rename("value").reset_index()
p = figure(x_range=list(df.columns), y_range=list(df.index), tools=TOOLS, toolbar_location='below',
           tooltips=[('Row, Column', '@level_0 x @level_1'), ('value', '@value')], height = 500, width = 500)

p.rect(x="level_1", y="level_0", width=1, height=1,
       source=data,
       fill_color={'field': 'value', 'transform': LinearColorMapper(palette=colors, low=data.value.min(), high=data.value.max())},
       line_color=None)
color_bar = ColorBar(color_mapper=LinearColorMapper(palette=colors, low=data.value.min(), high=data.value.max()), major_label_text_font_size="7px",
                     ticker=BasicTicker(desired_num_ticks=len(colors)),
                     formatter=PrintfTickFormatter(format="%f"),
                     label_standoff=6, border_line_color=None, location=(0, 0))
p.add_layout(color_bar, 'right')

show(p)

你可以使用matplotlib中的pyplot.matshow():

import matplotlib.pyplot as plt

plt.matshow(dataframe.corr())
plt.show()

编辑:

在评论中有一个关于如何更改轴勾标签的请求。这是一个豪华版,它画在一个更大的图形尺寸上,有轴标签来匹配数据框架,还有一个颜色条图例来解释颜色尺度。

我包括如何调整标签的大小和旋转,我正在使用一个图形比例,使颜色条和主要图形出来的高度相同。


编辑2: 由于df.corr()方法忽略非数值列,在定义x和y标签时应该使用.select_dtypes(['number']),以避免不必要的标签移位(包括在下面的代码中)。

f = plt.figure(figsize=(19, 15))
plt.matshow(df.corr(), fignum=f.number)
plt.xticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']).columns, fontsize=14, rotation=45)
plt.yticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']).columns, fontsize=14)
cb = plt.colorbar()
cb.ax.tick_params(labelsize=14)
plt.title('Correlation Matrix', fontsize=16);

试试这个函数,它也会显示相关矩阵的变量名:

def plot_corr(df,size=10):
    """Function plots a graphical correlation matrix for each pair of columns in the dataframe.

    Input:
        df: pandas DataFrame
        size: vertical and horizontal size of the plot
    """

    corr = df.corr()
    fig, ax = plt.subplots(figsize=(size, size))
    ax.matshow(corr)
    plt.xticks(range(len(corr.columns)), corr.columns)
    plt.yticks(range(len(corr.columns)), corr.columns)

为了完整起见,截至2019年底,我所知道的seaborn最简单的解决方案,如果使用Jupyter:

import seaborn as sns
sns.heatmap(dataframe.corr())

除了其他方法,还有对图也很好,它将给出所有情况下的散点图

import pandas as pd
import numpy as np
import seaborn as sns
rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(10, 10))
sns.pairplot(df)