我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?


当前回答

你可以使用来自seaborn的heatmap()来查看b/w不同特征的相关性:

import matplot.pyplot as plt
import seaborn as sns

co_matrics=dataframe.corr()
plot.figure(figsize=(15,20))
sns.heatmap(co_matrix, square=True, cbar_kws={"shrink": .5})

其他回答

如果你的dataframe是df,你可以简单地使用:

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(15, 10))
sns.heatmap(df.corr(), annot=True)

Seaborn的热图版本:

import seaborn as sns
corr = dataframe.corr()
sns.heatmap(corr, 
            xticklabels=corr.columns.values,
            yticklabels=corr.columns.values)

我认为有很多好的答案,但我把这个答案添加给那些需要处理特定列和显示不同情节的人。

import numpy as np
import seaborn as sns
import pandas as pd
from matplotlib import pyplot as plt

rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(18, 18))
df= df.iloc[: , [3,4,5,6,7,8,9,10,11,12,13,14,17]].copy()
corr = df.corr()
plt.figure(figsize=(11,8))
sns.heatmap(corr, cmap="Greens",annot=True)
plt.show()

当处理大量特征之间的相关性时,我发现将相关特征聚类在一起很有用。这可以用seaborn clustermap图来完成。

import seaborn as sns
import matplotlib.pyplot as plt

g = sns.clustermap(df.corr(), 
                   method = 'complete', 
                   cmap   = 'RdBu', 
                   annot  = True, 
                   annot_kws = {'size': 8})
plt.setp(g.ax_heatmap.get_xticklabels(), rotation=60);

clustermap函数使用层次聚类将相关特征排列在一起并生成树状树状图。

在这个图中有两个值得注意的集群:

Y_des和dew.point_des Irradiance, y_seasonal和dew.point_seasonal


FWIW的气象数据,以产生这一数字可以访问与这木星笔记本。

为了完整起见,截至2019年底,我所知道的seaborn最简单的解决方案,如果使用Jupyter:

import seaborn as sns
sns.heatmap(dataframe.corr())