我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?
当前回答
你可以通过绘制海洋出生的热图或熊猫的散射矩阵来观察特征之间的关系。
散射矩阵:
pd.scatter_matrix(dataframe, alpha = 0.3, figsize = (14,8), diagonal = 'kde');
如果你想可视化每个特征的偏度,也可以使用海运配对图。
sns.pairplot(dataframe)
党Heatmap:
import seaborn as sns
f, ax = pl.subplots(figsize=(10, 8))
corr = dataframe.corr()
sns.heatmap(corr,
cmap=sns.diverging_palette(220, 10, as_cmap=True),
vmin=-1.0, vmax=1.0,
square=True, ax=ax)
输出将是特征的相关映射。参见下面的例子。
杂货店和洗涤剂之间的相关性很高。类似的:
高相关性产品:
杂货和洗涤剂。
相关性中等的产品:
牛奶和杂货 牛奶和洗涤剂。纸
低相关性产品:
牛奶和熟食 冷冻和新鲜。 冷冻熟食店。
从配对图中:你可以从配对图或散射矩阵中观察到相同的一组关系。但从这些可以判断数据是否正态分布。
注:上图为取自数据的同一张图,用于绘制热图。
其他回答
如果你的dataframe是df,你可以简单地使用:
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(15, 10))
sns.heatmap(df.corr(), annot=True)
你可以使用来自seaborn的heatmap()来查看b/w不同特征的相关性:
import matplot.pyplot as plt
import seaborn as sns
co_matrics=dataframe.corr()
plot.figure(figsize=(15,20))
sns.heatmap(co_matrix, square=True, cbar_kws={"shrink": .5})
除了其他方法,还有对图也很好,它将给出所有情况下的散点图
import pandas as pd
import numpy as np
import seaborn as sns
rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(10, 10))
sns.pairplot(df)
试试这个函数,它也会显示相关矩阵的变量名:
def plot_corr(df,size=10):
"""Function plots a graphical correlation matrix for each pair of columns in the dataframe.
Input:
df: pandas DataFrame
size: vertical and horizontal size of the plot
"""
corr = df.corr()
fig, ax = plt.subplots(figsize=(size, size))
ax.matshow(corr)
plt.xticks(range(len(corr.columns)), corr.columns)
plt.yticks(range(len(corr.columns)), corr.columns)
形成相关矩阵,在我的情况下,zdf是我需要执行相关矩阵的数据框架。
corrMatrix =zdf.corr()
corrMatrix.to_csv('sm_zscaled_correlation_matrix.csv');
html = corrMatrix.style.background_gradient(cmap='RdBu').set_precision(2).render()
# Writing the output to a html file.
with open('test.html', 'w') as f:
print('<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-widthinitial-scale=1.0"><title>Document</title></head><style>table{word-break: break-all;}</style><body>' + html+'</body></html>', file=f)
然后我们可以截屏。或者将HTML转换为图像文件。
推荐文章
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 每n秒运行特定代码
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象