我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?


当前回答

你可以通过绘制海洋出生的热图或熊猫的散射矩阵来观察特征之间的关系。

散射矩阵:

pd.scatter_matrix(dataframe, alpha = 0.3, figsize = (14,8), diagonal = 'kde');

如果你想可视化每个特征的偏度,也可以使用海运配对图。

sns.pairplot(dataframe)

党Heatmap:

import seaborn as sns

f, ax = pl.subplots(figsize=(10, 8))
corr = dataframe.corr()
sns.heatmap(corr,
    cmap=sns.diverging_palette(220, 10, as_cmap=True),
    vmin=-1.0, vmax=1.0,
    square=True, ax=ax)

输出将是特征的相关映射。参见下面的例子。

杂货店和洗涤剂之间的相关性很高。类似的:

高相关性产品:

杂货和洗涤剂。

相关性中等的产品:

牛奶和杂货 牛奶和洗涤剂。纸

低相关性产品:

牛奶和熟食 冷冻和新鲜。 冷冻熟食店。

从配对图中:你可以从配对图或散射矩阵中观察到相同的一组关系。但从这些可以判断数据是否正态分布。

注:上图为取自数据的同一张图,用于绘制热图。

其他回答

你可以通过绘制海洋出生的热图或熊猫的散射矩阵来观察特征之间的关系。

散射矩阵:

pd.scatter_matrix(dataframe, alpha = 0.3, figsize = (14,8), diagonal = 'kde');

如果你想可视化每个特征的偏度,也可以使用海运配对图。

sns.pairplot(dataframe)

党Heatmap:

import seaborn as sns

f, ax = pl.subplots(figsize=(10, 8))
corr = dataframe.corr()
sns.heatmap(corr,
    cmap=sns.diverging_palette(220, 10, as_cmap=True),
    vmin=-1.0, vmax=1.0,
    square=True, ax=ax)

输出将是特征的相关映射。参见下面的例子。

杂货店和洗涤剂之间的相关性很高。类似的:

高相关性产品:

杂货和洗涤剂。

相关性中等的产品:

牛奶和杂货 牛奶和洗涤剂。纸

低相关性产品:

牛奶和熟食 冷冻和新鲜。 冷冻熟食店。

从配对图中:你可以从配对图或散射矩阵中观察到相同的一组关系。但从这些可以判断数据是否正态分布。

注:上图为取自数据的同一张图,用于绘制热图。

corrmatrix = df.corr()
corrmatrix *= np.tri(*corrmatrix.values.shape, k=-1).T
corrmatrix = corrmatrix.stack().sort_values(ascending = False).reset_index()
corrmatrix.columns = ['Признак 1', 'Признак 2', 'Корреляция']
corrmatrix[(corrmatrix['Корреляция'] >= 0.7) + (corrmatrix['Корреляция'] <= -0.7)]
drop_columns = corrmatrix[(corrmatrix['Корреляция'] >= 0.82) + (corrmatrix['Корреляция'] <= -0.7)]['Признак 2']
df.drop(drop_columns, axis=1, inplace=True)
corrmatrix[(corrmatrix['Корреляция'] >= 0.7) + (corrmatrix['Корреляция'] <= -0.7)]

如果你的主要目标是可视化相关矩阵,而不是创建一个图形本身,方便的pandas样式选项是一个可行的内置解决方案:

import pandas as pd
import numpy as np

rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(10, 10))
corr = df.corr()
corr.style.background_gradient(cmap='coolwarm')
# 'RdBu_r', 'BrBG_r', & PuOr_r are other good diverging colormaps

请注意,这需要在支持呈现HTML的后端中,例如JupyterLab Notebook。


样式

您可以轻松地限制数字精度:

corr.style.background_gradient(cmap='coolwarm').set_precision(2)

如果你更喜欢没有注释的矩阵,也可以把数字都去掉:

corr.style.background_gradient(cmap='coolwarm').set_properties(**{'font-size': '0pt'})

样式文档还包括更高级样式的说明,例如如何更改鼠标指针悬停的单元格的显示。


时间比较

在我的测试中,style.background_gradient()比plt.matshow()快4倍,比sn .heatmap()快120倍,矩阵为10x10。不幸的是,它的伸缩性不如plt.matshow():对于100x100的矩阵,两者需要相同的时间,而对于1000x1000的矩阵,plt.matshow()要快10倍。


储蓄

有几种可能的方法来保存风格化的数据框架:

通过追加render()方法返回HTML,然后将输出写入文件。 通过附加to_excel()方法保存为带有条件格式的.xslx文件。 结合imgkit保存位图 截屏(就像我在这里所做的那样)。


将整个矩阵的颜色归一化(pandas >= 0.24)

通过设置axis=None,现在可以基于整个矩阵计算颜色,而不是每列或每行:

corr.style.background_gradient(cmap='coolwarm', axis=None)


单角热图

由于很多人正在阅读这个答案,我想我应该添加一个技巧,如何只显示相关矩阵的一个角落。我发现这个更容易阅读,因为它删除了多余的信息。

# Fill diagonal and upper half with NaNs
mask = np.zeros_like(corr, dtype=bool)
mask[np.triu_indices_from(mask)] = True
corr[mask] = np.nan
(corr
 .style
 .background_gradient(cmap='coolwarm', axis=None, vmin=-1, vmax=1)
 .highlight_null(null_color='#f1f1f1')  # Color NaNs grey
 .set_precision(2))

我更喜欢用Plotly,因为它的图表更具交互性,也更容易理解。可以使用下面的代码片段。

import plotly.express as px

def plotly_corr_plot(df,w,h):
    fig = px.imshow(df.corr())
    fig.update_layout(
        autosize=False,
        width=w,
        height=h,)
    fig.show()

试试这个函数,它也会显示相关矩阵的变量名:

def plot_corr(df,size=10):
    """Function plots a graphical correlation matrix for each pair of columns in the dataframe.

    Input:
        df: pandas DataFrame
        size: vertical and horizontal size of the plot
    """

    corr = df.corr()
    fig, ax = plt.subplots(figsize=(size, size))
    ax.matshow(corr)
    plt.xticks(range(len(corr.columns)), corr.columns)
    plt.yticks(range(len(corr.columns)), corr.columns)