我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?


当前回答

可以使用matplotlib中的imshow()方法

import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('ggplot')

plt.imshow(X.corr(), cmap=plt.cm.Reds, interpolation='nearest')
plt.colorbar()
tick_marks = [i for i in range(len(X.columns))]
plt.xticks(tick_marks, X.columns, rotation='vertical')
plt.yticks(tick_marks, X.columns)
plt.show()

其他回答

你可以使用matplotlib中的pyplot.matshow():

import matplotlib.pyplot as plt

plt.matshow(dataframe.corr())
plt.show()

编辑:

在评论中有一个关于如何更改轴勾标签的请求。这是一个豪华版,它画在一个更大的图形尺寸上,有轴标签来匹配数据框架,还有一个颜色条图例来解释颜色尺度。

我包括如何调整标签的大小和旋转,我正在使用一个图形比例,使颜色条和主要图形出来的高度相同。


编辑2: 由于df.corr()方法忽略非数值列,在定义x和y标签时应该使用.select_dtypes(['number']),以避免不必要的标签移位(包括在下面的代码中)。

f = plt.figure(figsize=(19, 15))
plt.matshow(df.corr(), fignum=f.number)
plt.xticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']).columns, fontsize=14, rotation=45)
plt.yticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']).columns, fontsize=14)
cb = plt.colorbar()
cb.ax.tick_params(labelsize=14)
plt.title('Correlation Matrix', fontsize=16);

如果你的dataframe是df,你可以简单地使用:

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(15, 10))
sns.heatmap(df.corr(), annot=True)

可以使用matplotlib中的imshow()方法

import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('ggplot')

plt.imshow(X.corr(), cmap=plt.cm.Reds, interpolation='nearest')
plt.colorbar()
tick_marks = [i for i in range(len(X.columns))]
plt.xticks(tick_marks, X.columns, rotation='vertical')
plt.yticks(tick_marks, X.columns)
plt.show()

除了其他方法,还有对图也很好,它将给出所有情况下的散点图

import pandas as pd
import numpy as np
import seaborn as sns
rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(10, 10))
sns.pairplot(df)

我认为有很多好的答案,但我把这个答案添加给那些需要处理特定列和显示不同情节的人。

import numpy as np
import seaborn as sns
import pandas as pd
from matplotlib import pyplot as plt

rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(18, 18))
df= df.iloc[: , [3,4,5,6,7,8,9,10,11,12,13,14,17]].copy()
corr = df.corr()
plt.figure(figsize=(11,8))
sns.heatmap(corr, cmap="Greens",annot=True)
plt.show()