我有一种情况,有时当我从df读取csv时,我会得到一个不需要的类似索引的列,名为无名:0。

file.csv

,A,B,C
0,1,2,3
1,4,5,6
2,7,8,9

CSV是这样读取的:

pd.read_csv('file.csv')

   Unnamed: 0  A  B  C
0           0  1  2  3
1           1  4  5  6
2           2  7  8  9

这太烦人了!有人知道怎么处理吗?


当前回答

from IPython.display import display
import pandas as pd
import io


df = pd.read_csv('file.csv',index_col=[0])
df = pd.read_csv(io.StringIO(df.to_csv(index=False)))
display(df.head(5))

其他回答

简单地删除列使用:del df['column_name']

要获得所有未命名列,你也可以使用正则表达式,如df.drop(df.filter(regex="Unname"),axis=1, inplace=True)

在使用df.to_csv()时,一个不知道索引是否已被写入的解决方案如下所示:

df = pd.read_csv(file_name)
if 'Unnamed: 0' in df.columns:
    df.drop('Unnamed: 0', axis=1, inplace=True)

如果没有写入索引,则index_col=[0]将使用第一列作为索引,这是我们不希望看到的行为。

根据我的经验,有很多原因可能不希望将该列设置为index_col =[0],正如上面许多人建议的那样。例如,它可能包含混乱的索引值,因为数据在没有df.reset_index(drop=True)的情况下被索引或排序后保存到csv,导致立即混乱。

因此,如果你知道文件有这一列,而你不想要它,根据最初的问题,最简单的一行解决方案是:

Df = pd.read_csv('file.csv')。下降(列=['匿名:0 '])

or

df = pd.read_csv('file.csv',index_col=[0]).reset_index(drop=True)

简单地这样做:

df = df.loc[:, ~df.columns.str.contains('^Unnamed')]