我有一种情况,有时当我从df读取csv时,我会得到一个不需要的类似索引的列,名为无名:0。
file.csv
,A,B,C
0,1,2,3
1,4,5,6
2,7,8,9
CSV是这样读取的:
pd.read_csv('file.csv')
Unnamed: 0 A B C
0 0 1 2 3
1 1 4 5 6
2 2 7 8 9
这太烦人了!有人知道怎么处理吗?
我有一种情况,有时当我从df读取csv时,我会得到一个不需要的类似索引的列,名为无名:0。
file.csv
,A,B,C
0,1,2,3
1,4,5,6
2,7,8,9
CSV是这样读取的:
pd.read_csv('file.csv')
Unnamed: 0 A B C
0 0 1 2 3
1 1 4 5 6
2 2 7 8 9
这太烦人了!有人知道怎么处理吗?
当前回答
你可以对“未命名”列做以下任何一种操作:
删除未命名列 重命名它们(如果您想使用它们)
方法1:删除未命名列
# delete one by one like column is 'Unnamed: 0' so use it's name
df.drop('Unnamed: 0', axis=1, inplace=True)
#delete all Unnamed Columns in a single code of line using regex
df.drop(df.filter(regex="Unnamed"),axis=1, inplace=True)
方法2:重命名未命名列
df。rename(columns ={'未命名:0':'Name'}, inplace = True)
如果你想写一个空白的头在输入文件中,只要选择上面的'Name'为''。
其中OP的输入数据'file.csv'是:
,A,B,C
0,1,2,3
1,4,5,6
2,7,8,9
#读文件 Df = pd.read_csv('file.csv')
其他回答
另一种可能发生这种情况的情况是,如果您的数据不恰当地写入csv,使每行以逗号结束。这将使您在数据的末尾留下一个未命名的列无名:x,当您试图将其读入df时。
它是索引列,传递pd.to_csv(…, index=False)首先不写出一个未命名的索引列,请参阅to_csv()文档。
例子:
In [37]:
df = pd.DataFrame(np.random.randn(5,3), columns=list('abc'))
pd.read_csv(io.StringIO(df.to_csv()))
Out[37]:
Unnamed: 0 a b c
0 0 0.109066 -1.112704 -0.545209
1 1 0.447114 1.525341 0.317252
2 2 0.507495 0.137863 0.886283
3 3 1.452867 1.888363 1.168101
4 4 0.901371 -0.704805 0.088335
比较:
In [38]:
pd.read_csv(io.StringIO(df.to_csv(index=False)))
Out[38]:
a b c
0 0.109066 -1.112704 -0.545209
1 0.447114 1.525341 0.317252
2 0.507495 0.137863 0.886283
3 1.452867 1.888363 1.168101
4 0.901371 -0.704805 0.088335
你也可以通过传递index_col=0来告诉read_csv第一列是索引列:
In [40]:
pd.read_csv(io.StringIO(df.to_csv()), index_col=0)
Out[40]:
a b c
0 0.109066 -1.112704 -0.545209
1 0.447114 1.525341 0.317252
2 0.507495 0.137863 0.886283
3 1.452867 1.888363 1.168101
4 0.901371 -0.704805 0.088335
from IPython.display import display
import pandas as pd
import io
df = pd.read_csv('file.csv',index_col=[0])
df = pd.read_csv(io.StringIO(df.to_csv(index=False)))
display(df.head(5))
简单地删除列使用:del df['column_name']
在使用df.to_csv()时,一个不知道索引是否已被写入的解决方案如下所示:
df = pd.read_csv(file_name)
if 'Unnamed: 0' in df.columns:
df.drop('Unnamed: 0', axis=1, inplace=True)
如果没有写入索引,则index_col=[0]将使用第一列作为索引,这是我们不希望看到的行为。