我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

你应该从一开始就去掉N的2次方部分。

第二次编辑下面m的神奇表达式应该是

m = N - (N & (N-1));

而不是书面的

第二次编辑结束

m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
  return false;

第一次编辑:

轻微改进:

m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
  return false;

第一次编辑结束

现在像往常一样继续。这样,当你到达浮点部分时,你已经去掉了所有2次方部分为奇数(大约一半)的数字,然后你只考虑剩下的1/8。也就是说,你在6%的数字上运行浮点部分。

其他回答

你应该从一开始就去掉N的2次方部分。

第二次编辑下面m的神奇表达式应该是

m = N - (N & (N-1));

而不是书面的

第二次编辑结束

m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
  return false;

第一次编辑:

轻微改进:

m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
  return false;

第一次编辑结束

现在像往常一样继续。这样,当你到达浮点部分时,你已经去掉了所有2次方部分为奇数(大约一半)的数字,然后你只考虑剩下的1/8。也就是说,你在6%的数字上运行浮点部分。

如果你想要速度,考虑到整数的大小是有限的,我想最快的方法是(a)按大小划分参数(例如,按最大位集划分类别),然后对照该范围内的完美平方数组检查值。

为了表现,你经常不得不做一些宣传。其他人表达了不同的方法,然而,你注意到卡马克的黑客在达到N的某些值时更快。然后,你应该检查“N”,如果它小于N,请使用卡马克的方法,否则使用此处答案中描述的其他方法。

一个数字的平方根,假设该数字是一个完全平方。

复杂性为log(n)

/**
 * Calculate square root if the given number is a perfect square.
 * 
 * Approach: Sum of n odd numbers is equals to the square root of n*n, given 
 * that n is a perfect square.
 *
 * @param number
 * @return squareRoot
 */

public static int calculateSquareRoot(int number) {

    int sum=1;
    int count =1;
    int squareRoot=1;
    while(sum<number) {
        count+=2;
        sum+=count;
        squareRoot++;
    }
    return squareRoot;
}

这个问题让我很疑惑,所以我做了一些简单的编码,我在这里介绍它,因为我觉得它很有趣,很相关,但我不知道它有多有用。有一个简单的算法

a_n+1 = (a_n + x/a_n)/2

用于计算平方根,但它用于小数。我想知道,如果我只是用整数数学编码相同的算法,会发生什么。它甚至会汇聚到正确的答案上吗?我不知道,所以我写了一个程序。。。

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>

_Bool isperfectsquare(uint64_t x, uint64_t *isqrtx) {
  // NOTE: isqrtx approximate for non-squares. (benchmarked at 162ns 3GHz i5)
  uint32_t i;
  uint64_t ai;
  ai = 1 + ((x & 0xffff000000000000) >> 32) + ((x & 0xffff00000000) >> 24) + ((x & 0xffff0000) >> 16);
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = ai & 0xffffffff;
  if (isqrtx != NULL) isqrtx[0] = ai;
  return ai*ai == x;
}

void main() {

  uint64_t x, isqrtx;
  uint64_t i;
  for (i=1; i<0x100000000; i++) {
    if (!isperfectsquare(i*i, &isqrtx)) {
      printf("Failed at %li", i);
      exit(1);
    }
  }
  printf("All OK.\n");
} 

因此,事实证明,该公式的12次迭代足以为所有64位无符号长整数(完美平方)提供正确的结果,当然,非平方将返回false。

simon@simon-Inspiron-N5040:~$ time ./isqrt.bin 
All OK.

real    11m37.096s
user    11m35.053s
sys 0m0.272s

因此697s/2^32约为162纳秒。实际上,该函数对于所有输入都具有相同的运行时。讨论中其他地方详细介绍的一些措施可以通过检查最后四位等来加快非正方形的速度。希望有人像我一样觉得这很有趣。