为什么SELECT *是不好的做法?如果您添加了想要的新列,这难道不意味着需要更改的代码更少吗?
我知道SELECT COUNT(*)在某些db上是一个性能问题,但是如果您真的想要每个列呢?
为什么SELECT *是不好的做法?如果您添加了想要的新列,这难道不意味着需要更改的代码更少吗?
我知道SELECT COUNT(*)在某些db上是一个性能问题,但是如果您真的想要每个列呢?
当前回答
在很多情况下,SELECT *会在应用程序的运行时导致错误,而不是在设计时。它隐藏了应用程序中列更改或坏引用的信息。
其他回答
使用列名进行选择提高了数据库引擎从索引访问数据的可能性,而不是查询表数据。
当数据库模式发生变化时,SELECT *使您的系统暴露在意想不到的性能和功能变化中,因为您要将任何新列添加到表中,即使您的代码还没有准备好使用或显示这些新数据。
如果您真的想要每个列,我没有看到select(*)和命名列之间的性能差异。命名列的驱动程序可能只是为了明确您希望在代码中看到哪些列。
但是,通常情况下,您不希望每个列和select(*)会导致数据库服务器做不必要的工作,并且必须通过网络传递不必要的信息。它不太可能造成明显的问题,除非系统被大量使用或网络连接很慢。
还有一个更实际的原因:钱。当你使用云数据库时,你必须为数据处理付费,没有任何解释来读取你将立即丢弃的数据。
例如:BigQuery:
查询价格 查询定价是指运行SQL命令和用户定义函数的成本。BigQuery根据一个指标对查询收费:处理的字节数。
和控制投影-避免选择*:
最佳实践:控制投影—只查询所需的列。 投影指的是查询读取的列数。投影多余的列会导致额外的(浪费的)I/O和物化(写入结果)。 使用SELECT *是最昂贵的查询数据的方法。当您使用SELECT *时,BigQuery会对表中的每一列进行全面扫描。
在很多情况下,SELECT *会在应用程序的运行时导致错误,而不是在设计时。它隐藏了应用程序中列更改或坏引用的信息。
有三个主要原因:
Inefficiency in moving data to the consumer. When you SELECT *, you're often retrieving more columns from the database than your application really needs to function. This causes more data to move from the database server to the client, slowing access and increasing load on your machines, as well as taking more time to travel across the network. This is especially true when someone adds new columns to underlying tables that didn't exist and weren't needed when the original consumers coded their data access. Indexing issues. Consider a scenario where you want to tune a query to a high level of performance. If you were to use *, and it returned more columns than you actually needed, the server would often have to perform more expensive methods to retrieve your data than it otherwise might. For example, you wouldn't be able to create an index which simply covered the columns in your SELECT list, and even if you did (including all columns [shudder]), the next guy who came around and added a column to the underlying table would cause the optimizer to ignore your optimized covering index, and you'd likely find that the performance of your query would drop substantially for no readily apparent reason. Binding Problems. When you SELECT *, it's possible to retrieve two columns of the same name from two different tables. This can often crash your data consumer. Imagine a query that joins two tables, both of which contain a column called "ID". How would a consumer know which was which? SELECT * can also confuse views (at least in some versions SQL Server) when underlying table structures change -- the view is not rebuilt, and the data which comes back can be nonsense. And the worst part of it is that you can take care to name your columns whatever you want, but the next guy who comes along might have no way of knowing that he has to worry about adding a column which will collide with your already-developed names.
但这对SELECT *来说也不全是坏事。我在以下用例中大量使用它:
Ad-hoc queries. When trying to debug something, especially off a narrow table I might not be familiar with, SELECT * is often my best friend. It helps me just see what's going on without having to do a boatload of research as to what the underlying column names are. This gets to be a bigger "plus" the longer the column names get. When * means "a row". In the following use cases, SELECT * is just fine, and rumors that it's a performance killer are just urban legends which may have had some validity many years ago, but don't now: SELECT COUNT(*) FROM table; in this case, * means "count the rows". If you were to use a column name instead of * , it would count the rows where that column's value was not null. COUNT(*), to me, really drives home the concept that you're counting rows, and you avoid strange edge-cases caused by NULLs being eliminated from your aggregates. Same goes with this type of query: SELECT a.ID FROM TableA a WHERE EXISTS ( SELECT * FROM TableB b WHERE b.ID = a.B_ID); in any database worth its salt, * just means "a row". It doesn't matter what you put in the subquery. Some people use b's ID in the SELECT list, or they'll use the number 1, but IMO those conventions are pretty much nonsensical. What you mean is "count the row", and that's what * signifies. Most query optimizers out there are smart enough to know this. (Though to be honest, I only know this to be true with SQL Server and Oracle.)