在Python中,计算两个列表之间的差值的最佳方法是什么?
例子
A = [1,2,3,4]
B = [2,5]
A - B = [1,3,4]
B - A = [5]
在Python中,计算两个列表之间的差值的最佳方法是什么?
例子
A = [1,2,3,4]
B = [2,5]
A - B = [1,3,4]
B - A = [5]
当前回答
在字典列表的情况下,当集合解引发时,完整列表理解解工作
TypeError: unhashable type: 'dict'
测试用例
def diff(a, b):
return [aa for aa in a if aa not in b]
d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}
>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]
其他回答
如果你想要递归地深入到列表中的项目,我已经为python编写了一个包:https://github.com/erasmose/deepdiff
安装
从PyPi安装:
pip install deepdiff
如果你是Python3,你还需要安装:
pip install future six
示例使用
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function
同一对象返回空
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{}
项目类型发生变化
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}
某项的值已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'values_changed': ['root[2]: 2 ====>> 4']}
项目添加和/或删除
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
{'dic_item_added': ['root[5, 6]'],
'dic_item_removed': ['root[4]'],
'values_changed': ['root[2]: 2 ====>> 4']}
字符串的区别
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ 'root[2]: 2 ====>> 4',
"root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
root[4]['b']:
---
+++
@@ -1 +1 @@
-world
+world!
字符串差2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
root[4]['b']:
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
类型变化
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}
列表的区别
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'list_removed': ["root[4]['b']: [3]"]}
区别2:注意它不考虑顺序
>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ }
包含字典的列表:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}
在这个线程中,我没有看到保留a中的重复的解决方案。当a中的一个元素与B中的一个元素匹配时,这个元素必须在B中删除,这样当相同的元素在a中再次出现时,如果这个元素在B中只出现一次,那么它必须出现在差异中。
def diff(first, second):
l2 = list(second)
l3 = []
for el in first:
if el in l2:
l2.remove(el)
else:
l3 += [el]
return l3
l1 = [1, 2, 1, 3, 4]
l2 = [1, 2, 3, 3]
diff(l1, l2)
>>> [1, 4]
Python 2.7.3(默认,2014年2月27日,19:58:35)- IPython 1.1.0 - timeit:(github gist)
def diff(a, b):
b = set(b)
return [aa for aa in a if aa not in b]
def set_diff(a, b):
return list(set(a) - set(b))
diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]
diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)
from difflib import SequenceMatcher
def squeezer(a, b):
squeeze = SequenceMatcher(None, a, b)
return reduce(lambda p,q: p+q, map(
lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes())))
结果:
# Small
a = range(10)
b = range(10/2)
timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop
timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop
timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop
timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop
timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop
# Medium
a = range(10**4)
b = range(10**4/2)
timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop
timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop
timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop
timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop
timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop
# Big
a = xrange(10**7)
b = xrange(10**7/2)
timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop
timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'
@roman-bodnarchuk列表推导函数def diff(a, b)似乎更快。
如果你的顺序不重要,两个集合都可以散列,你可以在两个集合之间使用一个对称差分。
这将返回集合A或集合B中出现的值,但不会同时出现。
例如,问题显示了在列表A和列表B上执行的差值的返回值。
如果我们要(将两个列表转换为集合并)执行对称差分,我们将在一次操作中得到两者的合并结果。
A = [1,2,3,4]
B = [2,5]
print(set(A) ^ set(B)
# {1, 3, 4, 5}
加上这个答案,因为我还没有看到现有答案中提供的对称差异
如果顺序无关紧要,你可以简单地计算集合差值:
>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])