2024-10-29 07:00:04

计算列表差值

在Python中,计算两个列表之间的差值的最佳方法是什么?

例子

A = [1,2,3,4]
B = [2,5]

A - B = [1,3,4]
B - A = [5]

当前回答

A = [1,2,3,4]
B = [2,5]

#A - B
x = list(set(A) - set(B))
#B - A 
y = list(set(B) - set(A))

print x
print y 

其他回答

您可能希望使用集合而不是列表。

在这个线程中,我没有看到保留a中的重复的解决方案。当a中的一个元素与B中的一个元素匹配时,这个元素必须在B中删除,这样当相同的元素在a中再次出现时,如果这个元素在B中只出现一次,那么它必须出现在差异中。

def diff(first, second):
   l2 = list(second)
   l3 = []
   for el in first:
      if el in l2:
         l2.remove(el)
      else:
         l3 += [el]
   return l3

l1 = [1, 2, 1, 3, 4]
l2 = [1, 2, 3, 3]
diff(l1, l2)
>>> [1, 4]

Python 2.7.3(默认,2014年2月27日,19:58:35)- IPython 1.1.0 - timeit:(github gist)

def diff(a, b):
  b = set(b)
  return [aa for aa in a if aa not in b]

def set_diff(a, b):
  return list(set(a) - set(b))

diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]

diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)

from difflib import SequenceMatcher
def squeezer(a, b):
  squeeze = SequenceMatcher(None, a, b)
  return reduce(lambda p,q: p+q, map(
    lambda t: squeeze.a[t[1]:t[2]],
      filter(lambda x:x[0]!='equal',
        squeeze.get_opcodes())))

结果:

# Small
a = range(10)
b = range(10/2)

timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop

timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop

timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop

timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop

timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop

# Medium
a = range(10**4)
b = range(10**4/2)

timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop

timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop

timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop

timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop

timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop

# Big
a = xrange(10**7)
b = xrange(10**7/2)

timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop

timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop

timeit[diff_lamb_filter(a, b)]
# too long to wait for

timeit[diff_lamb_filter(a, b)]
# too long to wait for

timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'

@roman-bodnarchuk列表推导函数def diff(a, b)似乎更快。

当查看in -operator的TimeComplexity时,在最坏的情况下它与O(n)一起工作。即使是集合。

因此,当比较两个数组时,最好情况下的TimeComplexity为O(n),最坏情况下为O(n²)。

另一种(但不幸的是更复杂)解决方案,在最好和最坏的情况下都适用于O(n):

# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
  a_missing_in_b = []
  ai = 0
  bi = 0

  a = sorted(a, callback)
  b = sorted(b, callback)

  while (ai < len(a)) and (bi < len(b)):

    cmp = callback(a[ai], b[bi])
    if cmp < 0:
      a_missing_in_b.append(a[ai])
      ai += 1
    elif cmp > 0:
      # Item b is missing in a
      bi += 1
    else:
      # a and b intersecting on this item
      ai += 1
      bi += 1

  # if a and b are not of same length, we need to add the remaining items
  for ai in xrange(ai, len(a)):
    a_missing_in_b.append(a[ai])


  return a_missing_in_b

e.g.

>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]

如果你的顺序不重要,两个集合都可以散列,你可以在两个集合之间使用一个对称差分。

这将返回集合A或集合B中出现的值,但不会同时出现。

例如,问题显示了在列表A和列表B上执行的差值的返回值。

如果我们要(将两个列表转换为集合并)执行对称差分,我们将在一次操作中得到两者的合并结果。

A = [1,2,3,4]
B = [2,5]
print(set(A) ^ set(B)

# {1, 3, 4, 5}

加上这个答案,因为我还没有看到现有答案中提供的对称差异