元组和列表在元素的实例化和检索方面有什么性能差异吗?


当前回答

元组是不可变的,内存效率更高;为了提高速度和效率,列表会过度分配内存,以允许在没有常量reallocs的情况下执行追加操作。所以,如果你想在你的代码中迭代一个常量序列的值(例如在'上','右','下','左':),元组是首选的,因为这样的元组是在编译时预先计算的。

读取访问速度应该相同(它们都作为连续数组存储在内存中)。

但是,在处理可变数据时,list.append(item)比atuple+= (item,)更受欢迎。请记住,元组将被视为没有字段名的记录。

其他回答

Tuple在读取时非常高效的主要原因是因为它是不可变的。

为什么不可变对象容易读取?

原因是元组可以存储在内存缓存中,不像列表。程序总是从列表的内存位置读取,因为它是可变的(可以随时更改)。

元组是不可变的,内存效率更高;为了提高速度和效率,列表会过度分配内存,以允许在没有常量reallocs的情况下执行追加操作。所以,如果你想在你的代码中迭代一个常量序列的值(例如在'上','右','下','左':),元组是首选的,因为这样的元组是在编译时预先计算的。

读取访问速度应该相同(它们都作为连续数组存储在内存中)。

但是,在处理可变数据时,list.append(item)比atuple+= (item,)更受欢迎。请记住,元组将被视为没有字段名的记录。

元组应该比列表更高效,因为它们是不可变的。

如果列表或元组中的所有项都是相同的C类型,则还应该考虑标准库中的array模块。它占用的内存更少,运行速度更快。

dis模块可以反汇编函数的字节码,对于区分元组和列表非常有用。

在本例中,您可以看到访问元素会生成相同的代码,但是赋值元组要比赋值列表快得多。

>>> def a():
...     x=[1,2,3,4,5]
...     y=x[2]
...
>>> def b():
...     x=(1,2,3,4,5)
...     y=x[2]
...
>>> import dis
>>> dis.dis(a)
  2           0 LOAD_CONST               1 (1)
              3 LOAD_CONST               2 (2)
              6 LOAD_CONST               3 (3)
              9 LOAD_CONST               4 (4)
             12 LOAD_CONST               5 (5)
             15 BUILD_LIST               5
             18 STORE_FAST               0 (x)

  3          21 LOAD_FAST                0 (x)
             24 LOAD_CONST               2 (2)
             27 BINARY_SUBSCR
             28 STORE_FAST               1 (y)
             31 LOAD_CONST               0 (None)
             34 RETURN_VALUE
>>> dis.dis(b)
  2           0 LOAD_CONST               6 ((1, 2, 3, 4, 5))
              3 STORE_FAST               0 (x)

  3           6 LOAD_FAST                0 (x)
              9 LOAD_CONST               2 (2)
             12 BINARY_SUBSCR
             13 STORE_FAST               1 (y)
             16 LOAD_CONST               0 (None)
             19 RETURN_VALUE