元组和列表在元素的实例化和检索方面有什么性能差异吗?
当前回答
通常,您可能希望元组稍微快一点。但是,您一定要测试您的特定情况(如果差异可能会影响程序的性能—记住“过早的优化是万恶之源”)。
Python让这变得非常简单:时间是你的朋友。
$ python -m timeit "x=(1,2,3,4,5,6,7,8)"
10000000 loops, best of 3: 0.0388 usec per loop
$ python -m timeit "x=[1,2,3,4,5,6,7,8]"
1000000 loops, best of 3: 0.363 usec per loop
和…
$ python -m timeit -s "x=(1,2,3,4,5,6,7,8)" "y=x[3]"
10000000 loops, best of 3: 0.0938 usec per loop
$ python -m timeit -s "x=[1,2,3,4,5,6,7,8]" "y=x[3]"
10000000 loops, best of 3: 0.0649 usec per loop
因此,在这种情况下,元组的实例化几乎快了一个数量级,但列表的项访问实际上要快一些!因此,如果你创建了一些元组,并多次访问它们,实际上,使用列表可能会更快。
当然,如果你想要改变一个元素,列表肯定会更快,因为你需要创建一个全新的元组来改变其中的一个元素(因为元组是不可变的)。
其他回答
元组应该比列表更高效,因为它们是不可变的。
元组表现更好,但如果元组的所有元素都是不可变的。如果元组中的任何元素是可变的、列表或函数的,则编译它将花费更长的时间。这里我编译了3个不同的对象:
在第一个例子中,我编译了一个元组。它将元组加载为常量,加载并返回值。编译只需要一步。这叫做常数折叠。当我用相同的元素编译一个列表时,它必须首先加载每个单独的常量,然后构建列表并返回它。在第三个例子中,我使用了一个包含列表的元组。我为每个操作计时。
——内存分配
When mutable container objects such as lists, sets, dictionaries, etc are created, and during their lifetime, the allocated capacity of these containers (the number of items they can contain) is greater than the number of elements in the container. This is done to make adding elements to the collection more efficient, and is called over-allocating. Thus size of the list doesn't grow every time we append an element - it only does so occasionally. Resizing a list is very expensive, so not resizing every time an item is added helps out but you don't want to overallocate too much as this has a memory cost.
另一方面,由于不可变容器的项数在创建后是固定的,因此不需要这种过度分配——因此它们的存储效率更高。随着元组变大,它们的大小也会增加。
——复制
对不可变序列做一个浅拷贝是没有意义的,因为无论如何你都不能改变它。复制tuple只是返回它自己,还有内存地址。这就是为什么复制tuple更快
检索元素
我计时从元组和列表中检索元素:
从元组中检索元素比从列表中检索元素要快得多。因为在CPython中,元组可以直接访问(指针)它们的元素,而列表需要首先访问另一个数组,其中包含指向列表元素的指针。
通常,您可能希望元组稍微快一点。但是,您一定要测试您的特定情况(如果差异可能会影响程序的性能—记住“过早的优化是万恶之源”)。
Python让这变得非常简单:时间是你的朋友。
$ python -m timeit "x=(1,2,3,4,5,6,7,8)"
10000000 loops, best of 3: 0.0388 usec per loop
$ python -m timeit "x=[1,2,3,4,5,6,7,8]"
1000000 loops, best of 3: 0.363 usec per loop
和…
$ python -m timeit -s "x=(1,2,3,4,5,6,7,8)" "y=x[3]"
10000000 loops, best of 3: 0.0938 usec per loop
$ python -m timeit -s "x=[1,2,3,4,5,6,7,8]" "y=x[3]"
10000000 loops, best of 3: 0.0649 usec per loop
因此,在这种情况下,元组的实例化几乎快了一个数量级,但列表的项访问实际上要快一些!因此,如果你创建了一些元组,并多次访问它们,实际上,使用列表可能会更快。
当然,如果你想要改变一个元素,列表肯定会更快,因为你需要创建一个全新的元组来改变其中的一个元素(因为元组是不可变的)。
dis模块可以反汇编函数的字节码,对于区分元组和列表非常有用。
在本例中,您可以看到访问元素会生成相同的代码,但是赋值元组要比赋值列表快得多。
>>> def a():
... x=[1,2,3,4,5]
... y=x[2]
...
>>> def b():
... x=(1,2,3,4,5)
... y=x[2]
...
>>> import dis
>>> dis.dis(a)
2 0 LOAD_CONST 1 (1)
3 LOAD_CONST 2 (2)
6 LOAD_CONST 3 (3)
9 LOAD_CONST 4 (4)
12 LOAD_CONST 5 (5)
15 BUILD_LIST 5
18 STORE_FAST 0 (x)
3 21 LOAD_FAST 0 (x)
24 LOAD_CONST 2 (2)
27 BINARY_SUBSCR
28 STORE_FAST 1 (y)
31 LOAD_CONST 0 (None)
34 RETURN_VALUE
>>> dis.dis(b)
2 0 LOAD_CONST 6 ((1, 2, 3, 4, 5))
3 STORE_FAST 0 (x)
3 6 LOAD_FAST 0 (x)
9 LOAD_CONST 2 (2)
12 BINARY_SUBSCR
13 STORE_FAST 1 (y)
16 LOAD_CONST 0 (None)
19 RETURN_VALUE
元组是不可变的,内存效率更高;为了提高速度和效率,列表会过度分配内存,以允许在没有常量reallocs的情况下执行追加操作。所以,如果你想在你的代码中迭代一个常量序列的值(例如在'上','右','下','左':),元组是首选的,因为这样的元组是在编译时预先计算的。
读取访问速度应该相同(它们都作为连续数组存储在内存中)。
但是,在处理可变数据时,list.append(item)比atuple+= (item,)更受欢迎。请记住,元组将被视为没有字段名的记录。
推荐文章
- 有没有办法在python中做HTTP PUT
- “foo Is None”和“foo == None”之间有什么区别吗?
- .NET反射的成本有多高?
- 类没有对象成员
- Django模型“没有显式声明app_label”
- 熊猫能自动从CSV文件中读取日期吗?
- 在python中zip的逆函数是什么?
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 在c#中检查字符串是否只包含数字的最快方法
- 如何检索插入id后插入行在SQLite使用Python?
- 我如何在Django中添加一个CharField占位符?
- JavaScript变量声明在循环外还是循环内?
- 如何在Python中获取当前执行文件的路径?
- 我如何得到“id”后插入到MySQL数据库与Python?
- super()失败,错误:TypeError "参数1必须是类型,而不是classobj"当父不继承对象