在一个C程序中,我尝试了以下操作(只是为了检查行为)

 x = 5 % (-3);
 y = (-5) % (3);
 z = (-5) % (-3); 

printf("%d ,%d ,%d", x, y, z); 

在gcc中输出为(2,-2,-2)我以为每次都会有积极的结果。模量可以是负的吗?有人能解释一下这种行为吗?


当前回答

我认为在抽象算术中定义mod会更有用;不是作为一个运算,而是作为一个完全不同的算术类别,有不同的元素和不同的运算符。这意味着mod 3中的加法与“正常的”加法不同;这是;整数加法。

所以当你这样做的时候:

5 % -3

你试图将整数5映射到mod -3集合中的一个元素。这些是mod -3的元素:

{ 0, -2, -1 }

So:

0 => 0, 1 => -2, 2 => -1, 3 => 0, 4 => -2, 5 => -1

假设你因为某种原因不得不熬夜30个小时,那一天你还剩下几个小时?30 mod -24。

但是C语言实现的不是余,而是余数。不管怎样,关键是返回负号是有意义的。

其他回答

在数学中,这些惯例的起源,没有断言模算术应该产生一个正的结果。

Eg.

1 mod 5 = 1,但也可以等于-4。也就是说,1/5从0得到余数1或从5得到余数-4。(都是5的因数)

同样的, -1 mod 5 = -1,它也可以等于4。也就是说,-1/5从0得到余数-1或从-5得到余数4。(都是5的因数)

要进一步阅读,请参阅数学中的等价类。

C中的%操作符不是模操作符而是余数操作符。

模运算符和余数运算符不同于负值。

对于余数运算符,结果的符号与被除数(分子)的符号相同,而对于模运算符,结果的符号与除数(分母)的符号相同。

C将a % b的%操作定义为:

  a == (a / b * b) + a % b

用/表示整型除法,并截断为0。这是对0(而不是负无穷)的截断,它将%定义为余数运算符而不是模运算符。

C99要求当a/b是可表示的时:

(a/b) * b + a%b等于a

从逻辑上讲,这是有道理的。对吧?

让我们看看这会导致什么:


例A. 5/(-3) = -1

=> (-1) * (-3) + 5%(-3) = 5

这只能在5%(-3)= 2时发生。


例b (-5)/3 = -1

=> (-1) * 3 + (-5)%3 = -5

只有当(-5)%3为-2时才会发生这种情况

我认为在抽象算术中定义mod会更有用;不是作为一个运算,而是作为一个完全不同的算术类别,有不同的元素和不同的运算符。这意味着mod 3中的加法与“正常的”加法不同;这是;整数加法。

所以当你这样做的时候:

5 % -3

你试图将整数5映射到mod -3集合中的一个元素。这些是mod -3的元素:

{ 0, -2, -1 }

So:

0 => 0, 1 => -2, 2 => -1, 3 => 0, 4 => -2, 5 => -1

假设你因为某种原因不得不熬夜30个小时,那一天你还剩下几个小时?30 mod -24。

但是C语言实现的不是余,而是余数。不管怎样,关键是返回负号是有意义的。

模量可以是负的吗?

%可以是负数,因为它是余数运算符,是除法后的余数,而不是欧几里得除法后的余数。由于C99的结果可能是0,负或正。

 // a % b
 7 %  3 -->  1  
 7 % -3 -->  1  
-7 %  3 --> -1  
-7 % -3 --> -1  

要的模OP是一个经典的欧几里得模,而不是%。

我以为每次都会有积极的结果。

要执行定义良好的欧几里得模,只要a/b有定义,a,b是任意符号,且结果永远不为负:

int modulo_Euclidean(int a, int b) {
  int m = a % b;
  if (m < 0) {
    // m += (b < 0) ? -b : b; // avoid this form: it is UB when b == INT_MIN
    m = (b < 0) ? m - b : m + b;
  }
  return m;
}

modulo_Euclidean( 7,  3) -->  1  
modulo_Euclidean( 7, -3) -->  1  
modulo_Euclidean(-7,  3) -->  2  
modulo_Euclidean(-7, -3) -->  2