我在Python中有一个Unicode字符串,我想删除所有的重音(变音符)。

我在网上找到了一个优雅的方法(在Java中):

将Unicode字符串转换为它的长规范化形式(使用单独的字符表示字母和变音符) 删除所有Unicode类型为“变音符”的字符。

我需要安装一个库,如pyICU或这是可能的Python标准库?那么python3呢?

重要提示:我希望避免使用从重音字符到非重音对应字符的显式映射的代码。


当前回答

我刚刚在网上找到了这个答案:

import unicodedata

def remove_accents(input_str):
    nfkd_form = unicodedata.normalize('NFKD', input_str)
    only_ascii = nfkd_form.encode('ASCII', 'ignore')
    return only_ascii

它工作得很好(例如,对于法语),但我认为第二步(删除重音)可能比删除非ascii字符处理得更好,因为这对于某些语言(例如,希腊语)会失败。最好的解决方案可能是显式地删除标记为变音符的unicode字符。

编辑:这招管用:

import unicodedata

def remove_accents(input_str):
    nfkd_form = unicodedata.normalize('NFKD', input_str)
    return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])

如果字符c可以与前面的字符组合,主要是如果它是一个变音符,则unicodedata. combined (c)将返回true。

编辑2:remove_accent需要unicode字符串,而不是字节字符串。如果你有一个字节字符串,那么你必须像这样解码成一个unicode字符串:

encoding = "utf-8" # or iso-8859-15, or cp1252, or whatever encoding you use
byte_string = b"café"  # or simply "café" before python 3.
unicode_string = byte_string.decode(encoding)

其他回答

Gensim .utils.deaccent(text)来自Gensim -人类主题建模:

'Sef chomutovskych komunistu dostal postou bily prasek'

另一种解决方案是unicode。

请注意,建议的unicodedata解决方案通常只删除某些字符中的重音(例如,它将“ova”变成了“”,而不是“l”)。

我刚刚在网上找到了这个答案:

import unicodedata

def remove_accents(input_str):
    nfkd_form = unicodedata.normalize('NFKD', input_str)
    only_ascii = nfkd_form.encode('ASCII', 'ignore')
    return only_ascii

它工作得很好(例如,对于法语),但我认为第二步(删除重音)可能比删除非ascii字符处理得更好,因为这对于某些语言(例如,希腊语)会失败。最好的解决方案可能是显式地删除标记为变音符的unicode字符。

编辑:这招管用:

import unicodedata

def remove_accents(input_str):
    nfkd_form = unicodedata.normalize('NFKD', input_str)
    return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])

如果字符c可以与前面的字符组合,主要是如果它是一个变音符,则unicodedata. combined (c)将返回true。

编辑2:remove_accent需要unicode字符串,而不是字节字符串。如果你有一个字节字符串,那么你必须像这样解码成一个unicode字符串:

encoding = "utf-8" # or iso-8859-15, or cp1252, or whatever encoding you use
byte_string = b"café"  # or simply "café" before python 3.
unicode_string = byte_string.decode(encoding)

这里已经有很多答案,但之前没有考虑过:使用sklearn

from sklearn.feature_extraction.text import strip_accents_ascii, strip_accents_unicode

accented_string = u'Málagueña®'

print(strip_accents_unicode(accented_string)) # output: Malaguena®
print(strip_accents_ascii(accented_string)) # output: Malaguena

如果您已经在使用sklearn处理文本,这一点特别有用。这些是由CountVectorizer等类内部调用的函数,用于规范化字符串:当使用strip_accent ='ascii'时,则调用strip_accents_ascii;当使用strip_accent ='unicode'时,则调用strip_accents_unicode。

更多的细节

最后,考虑文档字符串中的这些细节:

Signature: strip_accents_ascii(s)
Transform accentuated unicode symbols into ascii or nothing

Warning: this solution is only suited for languages that have a direct
transliteration to ASCII symbols.

and

Signature: strip_accents_unicode(s)
Transform accentuated unicode symbols into their simple counterpart

Warning: the python-level loop and join operations make this
implementation 20 times slower than the strip_accents_ascii basic
normalization.

实际上,我在项目兼容的python 2.6, 2.7和3.4上工作,我必须从免费用户条目中创建id。

感谢你,我创造了这个功能,工作的奇迹。

import re
import unicodedata

def strip_accents(text):
    """
    Strip accents from input String.

    :param text: The input string.
    :type text: String.

    :returns: The processed String.
    :rtype: String.
    """
    try:
        text = unicode(text, 'utf-8')
    except (TypeError, NameError): # unicode is a default on python 3 
        pass
    text = unicodedata.normalize('NFD', text)
    text = text.encode('ascii', 'ignore')
    text = text.decode("utf-8")
    return str(text)

def text_to_id(text):
    """
    Convert input text to id.

    :param text: The input string.
    :type text: String.

    :returns: The processed String.
    :rtype: String.
    """
    text = strip_accents(text.lower())
    text = re.sub('[ ]+', '_', text)
    text = re.sub('[^0-9a-zA-Z_-]', '', text)
    return text

结果:

text_to_id("Montréal, über, 12.89, Mère, Françoise, noël, 889")
>>> 'montreal_uber_1289_mere_francoise_noel_889'

对于@ mini夸克的回答:

我试图读取一个csv文件,它是一半法语(包含重音),也有一些字符串,最终将成为整数和浮动。 作为测试,我创建了一个test.txt文件,如下所示:

M, Montré艾尔,关于12.89太阳è弗兰çoise,不889,ël

我必须包括第2行和第3行才能让它工作(这是我在python ticket中找到的),以及加入@Jabba的评论:

import sys 
reload(sys) 
sys.setdefaultencoding("utf-8")
import csv
import unicodedata

def remove_accents(input_str):
    nkfd_form = unicodedata.normalize('NFKD', unicode(input_str))
    return u"".join([c for c in nkfd_form if not unicodedata.combining(c)])

with open('test.txt') as f:
    read = csv.reader(f)
    for row in read:
        for element in row:
            print remove_accents(element)

结果:

Montreal
uber
12.89
Mere
Francoise
noel
889

(注意:我在Mac OS X 10.8.4和使用Python 2.7.3)