我需要创建一个长度为n的NumPy数组,其中每个元素都是v。
还有什么比:
a = empty(n)
for i in range(n):
a[i] = v
我知道0和1适用于v = 0,1。我可以用v * ones(n),但当v为None时行不通,也会慢得多。
我需要创建一个长度为n的NumPy数组,其中每个元素都是v。
还有什么比:
a = empty(n)
for i in range(n):
a[i] = v
我知道0和1适用于v = 0,1。我可以用v * ones(n),但当v为None时行不通,也会慢得多。
当前回答
您可以使用numpy。瓷砖,例如:
v = 7
rows = 3
cols = 5
a = numpy.tile(v, (rows,cols))
a
Out[1]:
array([[7, 7, 7, 7, 7],
[7, 7, 7, 7, 7],
[7, 7, 7, 7, 7]])
尽管tile是为了“平铺”一个数组(而不是在这种情况下的标量),它将完成工作,创建任何大小和维度的预填充数组。
其他回答
我相信填充是最快的方法。
a = np.empty(10)
a.fill(7)
您还应该始终避免像您在示例中所做的那样进行迭代。简单的A [:] = v将完成使用numpy广播所做的迭代。
您可以使用numpy。瓷砖,例如:
v = 7
rows = 3
cols = 5
a = numpy.tile(v, (rows,cols))
a
Out[1]:
array([[7, 7, 7, 7, 7],
[7, 7, 7, 7, 7],
[7, 7, 7, 7, 7]])
尽管tile是为了“平铺”一个数组(而不是在这种情况下的标量),它将完成工作,创建任何大小和维度的预填充数组。
我们也可以写成
v=7
n=5
a=np.linspace(v,v,n)
你也可以使用np.broadcast_to。
要创建一个形状(维度)为s,值为v的数组,你可以这样做(在你的例子中,数组是1-D,并且s = (n,)):
a = np.broadcast_to(v, s).copy()
如果a只需要是只读的,你可以使用以下方法(这是更有效的方式):
a = np.broadcast_to(v, s)
这样做的好处是v可以被赋值为单个数字,但如果需要不同的值,也可以赋值为数组(只要v.shape匹配s的尾部)。
额外的好处:如果你想强制创建的数组的dtype:
a = np.broadcast_to(np.asarray(v, dtype), s).copy()
为Numpy 1.7.0更新:(向@Rolf Bartstra致敬。)
一个= np.empty (n);A.fill(5)最快。
按速度递减排列:
%timeit a=np.empty(10000); a.fill(5)
100000 loops, best of 3: 5.85 us per loop
%timeit a=np.empty(10000); a[:]=5
100000 loops, best of 3: 7.15 us per loop
%timeit a=np.ones(10000)*5
10000 loops, best of 3: 22.9 us per loop
%timeit a=np.repeat(5,(10000))
10000 loops, best of 3: 81.7 us per loop
%timeit a=np.tile(5,[10000])
10000 loops, best of 3: 82.9 us per loop